FEXAMPLE NO 4 USER INPUT P-Y CURVES

UNITS--ENGL

AR AR E RN TR AR RRRRRRRARRRARARARRRNRNRARR RSN R AR RRTN RN

PILE DEFLECTION, BENDING MOMENT, SHEAR & SOIL RESISTANCE

KRR AR AR AT AR RARRAARRRRANRRRRR AR AARRRRR R ARk ke

INPUT INFORMATION

L2222 222222222 R 22222 2 2 2

THE LOADING IS STATIC

PILE GEOMETRY AND PROPERTIES

720.00 IN
.290E+05 KIP/IN**2

PILE LENGTH
MODULUS OF ELASTICITY OF PILE
2 SECTION(S)

o

X DIAMETER MOMENT OF AREA
INERTIA
IN IN IN**4 IN**2
.00
16.000 «105E+04 .359E+02
180.00
16.000 . 720E+03 .239E+02
720.00

SOILS INFORMATION

X~-COORDINATE AT THE GROUND SURFACE = 60.00 IN
SLOPE ANGLE AT THE GROUND SURFACE = .00 DEG.
1 LAYER(S) OF SOIL

LAYER 1

THE LAYER RESPONSE IS DEFINED BY INPUT P-Y CURVES

X AT THE TOP OF THE LAYER = 60.00 IN
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X AT THE BOTTOM OF THE LAYER
VARIATION OF SOIL MODULUS, k

INPUT P-Y CURVES

X,IN
60.00

X,IN
76.00

X,IN
92.00

X,IN
108.00

X,IN
140.00

X,IN
188.00

7 CURVES,

Y,IN
.00
.20
.40
.80

1.20

6.00

Y,IN
.00
.20
.40
.80

1.20

6.00

¥Y,IN
.00
.20
-40
.80
1.20
6.00

Y,IN
.00
.20
.40
.80

1.20

6.00

Y,IN
.00
.20
.40
.80

1.20

6.00

Y,IN
.00
.20
.40
.80

720.00 IN
.500E+02 LBS/IN**3

POINTS ON EACH

P,LBS/IN
.00
66.10
83.20
105.00
120.00
.00

P,LBS/IN
.00
79.80
100.00
127.00
145.00
15.00

P,LBS/IN
.oo
93.30
117.00
148.00
169.00
34.00

P,LBS/IN
00

107.00
135.00
170.00
194.00

61.00

P,LBS/IN
.00
134.00
169.00
213.00
243.00
123.00

P,LBS/IN
.00
175.00
221.00
278.00

212



1.20 318.00 -

6.00 264.00
X,IN Y,IN P,LBS/IN
214.00 .00 .00
.20 198.00
.40 250.00
.80 315.00 ‘
1.20 360.00
6.00 360.00

FINITE DIFFERENCE PARAMETERS

NUMBER OF PILE INCREMENTS = 120
TOLERANCE ON DETERMINATION OF DEFLECTIONS = .100E-03 IN
MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR PILE ANALYSIS = 100
MAXTMUM ALLOWABLE DEFLECTION = «10E+03 IN
INPUT CODES

OUTPT = 1

RKCYCL = 1

KBC = 1

KPYOP = 0

INC = 3

EXAMPLE NO 4 USER INPUT P-Y CURVES

UNITS--ENGL

OUTPUT INFORMATION

RRARRAEARRARARNIRRNARRARRRRRNRRRRR RN

---------- ¥R - - - - -

PILE LOADING CONDITION

«500E+01 KIP
.000E+00 IN-KIP
.100E+03 KIP

LATERAL LOAD AT PILE HEAD
APPLIED MOMENT AT PILE HEAD
AXIAL LOAD AT PILE HEAD
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X DEFLECTION  MOMENT TOTAL SHEAR  SOIL FLEXURAL

STRESS RESIST  RIGIDITY

IN IN IN-KIP  LBS/IN**2 KIP  LBS/IN  KIP-IN**2
KARXKE AR NNR AARERRRRRARE kXA AN N N RRXKXLRENRR RRRREA NN, L2 2222 222 8]
.00 .453E+00  .000E+00  .279E+04  .532E+01 .000E+00 .305E+08
18.00  .396E+00  .957E+02  .351E+04  .500E+01 .000E+00 .305E+08
36.00  .340E+00  .191E+03  .424E+04  .500E+01 .000E+00  .305E+08
54.00  .286E+00  .287E+03  .497E+04  .500E+01  .000E+00 .305E+08
72.00  .235E+00  .374E+03  .563E+04  .387E+01  .798E+02 . 305E+08
90.00  .188E+00  .435E+03  .610E+04  .235E+01 .862E+02  .305E+08
108.00  .146E+00  .468E+03  .635E+04 .869E+00 .780E+02 .305E+08
126.00  .109E+00  .475E+03  .640E+04 -.435E+00 .663E+02  .305E+08
144.00  .762E-01  .460E+03  .629E+04 ~-.151E+01 .524E+02  .305E+08
162.00  .488E-01  .428E+03  .605E+04 -.231E+01 .373E+02  .305E+08
180.00  .259E-01  .384E+03  .571E+04 -.284E+01 .218E+02 .257E+08
198.00  .795E-02  .331E+03  .787E+04 ~.310E+01 .730E+01 .209E+08
216.00 -.488E-02  .276E+03  .725E+04 ~-.312E+01  .484E+01  .209E+08
234.00 -.134E-01  .222E+03  .665E+04 =-.295E+01 .133E+02 .209E+08
252.00 -.185E-01  .172E+03  .609E+04 -.267E+01 .183E+02  .209E+08
270.00 -.209E-01  .127E+03  .S60E+04 ~-.231E+01 .207E+02  .209E+08
288.00 -.214E-01  .890E+02  .517E+04 -.193E+01 .212E+02 . 209E+08
306.00 -.204E-01  .S76E+02  .482E+04 -.156E+01 .202E+02 . 209E+08
324.00 -.186E-01  .325E+02  .455E+04 ~-.121E+01 .184E+02  .209E+08
342.00 -.162E-01  .134E+02 .433E+04 -.898E+00 .161E+02 .209E+08
360.00 -.137E-01 -.S516E+00 .419E+04 -.632E+00 .135E+02  .209E+08
378.00 -.111E-01 =-.101E+02 .430E+04 -.411E+00 .110E+02 .209E+08
396.00 -.B66E-02 -.161E+02 .436E+04 -.236E+00 .858E+01  .209E+08
414.00 -.649E-02 ~-.192E+02 .440E+04 -.101E+00 .642E+01  .209E+08
432.00 -.461E-02 =-.203E+02 .441E+04 -.256E-02 .457E+01 .209E+08
450.00 -.305E-02 -.198E+02 .440E+04 .653E-01 .302E+01 .209E+08
468.00 -.179E-02 -.184E+02 .439E+04  .108E+00 .177E+01  .209E+08
486.00 -.820E-03 -.163E+02 .437E+04 .131E+00 .811E+00 .209E+08
504.00 -.993E-04 =-.139E+02 .434E+04 .139E+00 .981E-01 .209E+08
522.00  .406E-03 -.115E+02 .431E+04 .136E+00 .402E+00 .209E+08
540.00  .732E-03 -.913E+01 .429E+04 .126E+00 .725E+00 .209E+08
558.00  .917E-03 =-.702E+01 .426E+04 .111E+00 .908E+00 .209E+08
576.00  .993E-03 -.519E+01  .424E+04  .935E-01  .983E+00 .209E+08
594.00  .987E-03 -.366E+01 .422E+04 .758E-01 .977E+00 .209E+08
612.00  .925E-03 ~-.245E+01 .421E+04 .587E-01 .916E+00 .209E+08
630.00  .824E-03 -.153E+01 .420E+04  .431E-01 .816E+00 .209E+08
648.00  .699E-03 -.866E+00 .419E+04  .295E-01 .692E+00 .209E+08
666.00  .561E-03 -.427E+00 .419E+04 .182E-01 .SS5E+00  .209E+08
684.00  .415E-03 -.168E+00 .419E+04 .952E-02 .411E+00 .209E+08
702.00  .267E-03 -.410E-01 .418E+04  .344E-02 .265E+00 .209E+08
720.00  .118E~03  .000E+00 .418E+04 .000E+00 .117E+00 .209E+08

COMPUTED LATERAL FORCE AT PILE HEAD = «50000E+01 KIP
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COMPUTED MOMENT AT PILE HEAD
COMPUTED SLOPE AT PILE HEAD

THE OVERALL MOMENT IMBALANCE

.00000E+00 IN~-KIP
~.31736E-02

~-.162E-08 IN-KIP

THE OVERALL LATERAL FORCE IMBALANCE .117E-07 LBS
OUTPUT SUMMARY
PILE HEAD DEFLECTION = +453E+00 IN
MAXIMUM BENDING MOMENT = .475E+03 IN-KIP
MAXIMUM TOTAL STRESS = .826E+04 LBS/IN**2
NO. OF ITERATIONS = 6
MAXIMUM DEFLECTION ERROR = .881lE-04 IN
SUMMARY TABLE
R LT I T Y Y T
LATERAL BOUNDARY AXIAL MAX. MAX.
LOAD CONDITION LOAD YT ST MOMENT STRES
(KIP) BC2 (KIP) (IN) (IN/IN) (IN-KIP) (LBS/IN**2)
.500E+01 .000E+00 .100E+03 -453E+00 -.317E-02 «475E+03 .826E+04
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EXAMPLE 5, COMPUTE ULTIMATE BENDING MOMENT FOR BORED PILES

Example 5 is included to illustrate the functions of Program
COM624P for computing the ultimate bending moment and an
interaction diagram. A total of eight axial loads are specified
for the program to compute the ultimate bending moment at each
axial load and to construct the interaction diagram (ultimate
bending moment versus axial load). Only the tables of output for

axial load of 0 kips, 100 kips, and 500 kips are shown in the
following pages.

The ultimate bending moment of a reinforced-concrete section
is taken at a maximum strain of concrete of 0.003 based on the ACI
code. It should be noted that the flexural rigidity (EI),
corresponding to the ultimate bending moment, is significantly
lower than that of the uncracked EI value. Therefore, the user
should also pay attention to the variation of EI versus moment as
shown in the first two columns in the output summary. In general,
the moment distribution is not much affected by the EI used in the
computation. However, if the deflection is more critical for the
design, then careful interpretation of EI should be done.

Three ranges of EI magnitude can be found in the output. The
first range of EI magnitude is associated with the uncracked
stage. The concrete is uncracked and the EI is more-or-less
constant and is equal to the calculated EI for the gross section.
The second range of EI magnitude is for the cracked stage. A
significant decrease in the EI value takes place as cracks
continue propagating. The third range of EI magnitude is for the
cracked and large strain stage. The EI value is further reduced
because the stress-strain curve as shown in Fig. 4.1 of Part II of
this manual is softened at large strain.

The input and output data are shown in the following pages.
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EXAMPLE 5 COMPUTE ULTIMATE BENDING MOMENT FOR BORED PILES

2222 222222222222 R 2Rt Rt s Risa i s a 2 a t f R 24

ULTIMATE BENDING RESISTANCE AND FLEXURAL RIGIDITY

(3 X 2223222222 222222222 a2t Eis i s b ot it i R el

DIAMETER = 30.00 IN

CONCRETE COMPRESSIVE STRENGTH = 4.000000 KIP/IN**2
REBAR YIELD STRENGTH = 60.000000 KIP/IN**2
MODULUS OF ELASTICITY OF STEEL = 29000.000000 KIP/IN**2

NUMBER OF REINFORCING BARS = 12
NUMBER OF ROWS OF REINFORCING BARS = 7
COVER THICKNESS = 3.000 IN

SQUASH LOAD CAPACITY = 2939.89 KIPS
ROW AREA OF DISTANCE TO
NUMBER REINFORCEMENT CENTROIDAL AXIS

IN**2 IN

1 .790000 12.0000

2 1.580000 10.3923

3 1.580000 6.0000

4 1.580000 .0000

5 1.580000 -6.0000

6 1.580000 -10.3923

7 .7%90000 -12.0000
OUTPUT RESULTS FOR AN AXIAL LOAD = .00 KIPS
AR RN AR AR AR RR AR RN RRRARRRRERRRRRARRARREANRS
MOMENT EI PHI MAX STR N AXIS

IN-KIP KIP-IN**2 1/IN IN/IN IN

164.369 .16437E+09 .000001 .00002 15.0477

813.938 .16279E+09 .000005 .00008 15.0473
1450.856 .16121E+09 .000009 .00014 15.0470
1450.856 .11160E+09 .000013 .00011  8.2641
1450.856 .85344E+08 .000017 .00014 8.2758
1450.856 .69088BE+08 .000021 .00017 8.2877
1450.856 .58034E+08 .000025 .00021  8.2998
1450.856 .50030E+08 .000029 .00024 -- 8.3120
1450.856 .43965E+08 .000033  .00027 8.3241
1542.059 .41677E+08 .000037 - .00031  8.3367
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1706.145 -41613E+08 .000041 .00034 8.3490

1869.770 +41550E+08 .000045 .00038 8.3619
2032.827 +41486E+08 .000049 .00041 8.3747
2195.364 -41422E+08 .000053 .00044 8.3877
3396.051 -40916E+08 .000083 .00070 8.4898
4557.698 «40334E+08 .000113 .00097 8.5752
5181.602 .36235E+08 .000143 .00120 8.4079
5551.161 .32088E+08 .000173 .00141 8.1675

5731.058 .28232E+08 .000203 .00161 7.9192
5896.307 .25306E+08 .000233 .00180 7.7198

6051.316 +23009E+08 -000263 .00199 7.5807
6143.448 .20967E+08 .000293 .00218 7.4550
6173.590 .19113E+08 .000323 .00235 7.2786
6201.067 +17567E+08 .000353 .00252 7.1394
6226.547 +16257E+08 -000383 .00269 7.0284
6253.610 .15142E+08 .000413 .00288 6.9714
6274.235 -14163E+08 .000443 .00305 6.8853
6293.935 -13306E+08 .000473 .00322 6.8144

6312.940 +12551E+08 .000503 .00340 6.7549
6331.056 .11878E+08 .000533 .00357 6.7038
6348.535 .11276E+08 .000563 .00375 6.6613
6359.241 +10724E+08 .000593 .00394 6.6402

THE ULTIMATE BENDING MOMENT AT A CONCRETE STRAIN OF 0.003
Is : .627E+04 IN-KIP

OUTPUT RESULTS FOR AN AXIAL LOAD = 100.00 KIPS
******t**t**a**n***ta******at**t*w**t**a**t*******n**
MOMENT EI PHI MAX STR N AXIS
IN-KIP KIP~IN**2 1/IN IN/IN IN

162.006 -16201E+09 .000001 .00005 50.6153

808.512 .16170E+09 .000005 .00011 22,2220
1444.742 -16053E+09 .000009 .00017 19.079%0
1444.742 «11113E+09 .000013 .00019 14,9310
1444.742 -84985E+08 .000017 .00023 13.6948
1520.720 -72415E+08 .000021 .00027 12.8775
1691.928 .67677E+08 .000025 .00031 12,2856
1860.528 -64156E+08 .000029 .00034 11.8438
2028.040 .61456E+08 .000033 -00038 11.5001
2191.405 .59227E+08 .000037 .00042 11.2183
2355.083 -57441E+08 .000041 .00045 10.9999
2517.698 .55949E+08 .000045 .00049 10.8075
2678.916 +54672E+08 .000049 .00052 10.6459
2839.518 +53576E+08 .000053 .00056 10.5106
4022.045 .48458E+08 .000083 .00083 9.9455
5163.315 +45693E+08 .000113 .00110 9.7123

236



5932.108 .41483E+08 .000143 .00135 9.4648

6379.425 .36875E+08 .000173 .00159 9.1707
6569.130 .32360E+08 .000203 .00180 8.8503
6723.582 .28857E+08 .000233 .00200 8.5933
6868.083 .26114E+08 .000263 .00222 8.4326
6997.694 .23883E+08 .000293 .00243 8.2930
7067.918 .21882E+08 .000323 .00263 8.1401
7081.734 .20062E+08 .000353 .00282 8,0000
7120.547 .18592E+08 .000383 .00302 7.8743
7140.321 -17289E+08 .000413 .00320 7.7537
7158.454 .16159E+08 .000443 .00339 7.6537
7168.455 .15155E+08 .000473 .00359 7.5871
7176.483 .14267E+08 .000503 .00379 745333

7176.483 .13464E+08 .000533 .00400 7.4999

THE ULTIMATE BENDING MOMENT AT A CONCRETE STRAIN OF 0.003
Is : .712E+04 IN-KIP

OUTPUT RESULTS FOR AN AXIAL LOAD = 500.00: KIPS

AR R RN RN AR AR KR TRRRRRRRRARARAARRRRRIANIRRRRRIERR
MOMENT EI PHI MAX STR N AXIS
IN-KIP KIP-IN**2 1/IN IN/IN © IN

150.462 .15046E+09 .000001 .00020 *rnxwRw
752.095 .15042E+09 .000005 .00026 52.0128

1353.050 .15034E+09 .000009 .00032 35.6773
1953.446 .15027E+09 .000013 .00038 29.4320
2549.110 .14995E+09 .000017 .00044 26.1480
3137.984 .14943E+09 .000021 .00051 24.1300
3243.175 .12973E+09 .000025 .00055 22.0952
3542.862 .12217E+09 .000029 .00060 20.8238
3808.285 .11540E+09 .000033 .00065 19.8069
4051.712 .10951E+09 .000037 .00070 18.9774
4273.498 .10423E+09 .000041 .00075 18.2747
4482.946 .99621E+08 .000045 .00080 17.6794
4682.184 .95555E+08 .000049 .00084 17.1674
4873.092 .91945E+08 .000053 .00089 16.7220
6133.245 .73895E+08 .000083 .00121 14.6076
7229.911 .63982E+08 .000113 .00153 13.5570
8225.903 .57524E+08 .000143 .00186 12.9841
8857.891 .51202E+08 .000173 .00217 12.5170
9201.317 .45327E+08 .000203 .00246 12.1343
9481.273 .40692E+08 .000233 .00276 11.8621
9562.766 .36360E+08 .000263 .00305 11.5895
9637.997 .32894E+08 .000293 .00334 11.4096

9678.995 .29966E+08 .000323 .00364 11.2737
9692.204 .27457E+08 .000353 .00396 11.2071

THE ULTIMATE BENDING MOMENT AT A CONCRETE STRAIN OF 0.003
Is : .955E+04 IN-KIP
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Moment ¢ Inch-Kips)> < 1000 ‘s>

Curvature ¢0.0001 ’s >

0.00 1.00 2.00 3.00 4.00 S.00 6.00 7.00
10.0 ol LERRRR/RRARERRRR! RRRERRREIERRARRERR RERERRARIANARERRRE IRRLERK)

...............................................

R T PP

................................................

*0 ~100 C:PLOTDATA Cnt1-P to Print Screen

Bending Moment vs. Curvature
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El « Inch#2-Kips> ¢ 10000000 °s >

Monent ¢(Inch-Kips> (1000°s>

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

20.0

16.0

14.0

12.0

10.0

|

4Ill§|llqlllljllllllllJIqullll!lIIlIllllllllllllﬂllll|Illjlllq

lllIIIllllllllllll]lllll’[[lllllll|1lll|llllllr

A

+0 ~100 C: PLOTDATA Cntl-P to Print Screen

EI vs. Bending Moment
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Axial Load CKips)> C100°’s >

Morment C(Inch~Kips) C1000°’s >

6.0 7.0 8.0 9.0 10.0 i1.0 12.0 13.0
20.0 lIHIIlllllN\lllllHlHllll IIIHIIIIIHIHIIHIHIHIIII IlHlIlﬂ]

C:PLOTDATA Cntl-P to Print Screen

Interaction Diagram

240



EXAMPLE 6, ANALYSES RELATED TO DESIGN OF CONCRETE PILES

This example is presented to illustrate the capability of
Program COM624P to perform analyses that can yield results of
direct benefit to the designer of a reinforced-concrete pile. The
pile is 30-inches in diameter and 30 ft in length. The pile is
embedded in a uniform dense sand with an internal friction angle
of 38 degrees. In general, with input information provided for
reinforcement in the same data file, the program will compute the
ultimate bending moment as the first step. Loadings and
preliminary data on piles are selected, and the program yields
values of pile deflection, moment, shear, and soil resistance as
the second step.

The user can then compare the maximum bending moment computed
in the second step with the ultimate bending moment in the first
step for an allowable factor of safety. The properties of the
pile can then be changed, if necessary or desirable,land further
computations made to achieve the final selection of the properties
of the pile.

As described in Example 5, the EI values used for each pile
have a significant effect on the deflection of the pile. The
relationship between moment and EI is computed during the first
step. Therefore, the user can ask the program to take the moment -
EI variation directly into the computation. The user may also
manually input the justified EI values for different sections,
based on the curve of bending moment versus depth obtained
earlier. In this example, the option for automatic iterations
using internally-generated, cracked/uncracked EI values was given
to the computer for the final solution.
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EXAMPLE 6 ANALYSES RELATED TO DESIGN OF CONCRETE PILES

KRR ERERA TR AR RN R A AR R IR AR R AR A EARENRR AR R R AR AN RN AR AR RN RN R

ULTIMATE BENDING RESISTANCE AND FLEXURAL RIGIDITY

KA R AR R AR RN AR AR RN NN AR AR RRR R RN RN RN RRRRRRTRRRNRNRNRR NN

DIAMETER = 30.00 IN

CONCRETE COMPRESSIVE STRENGTH = 3.500000 KIP/IN**2
REBAR YIELD STRENGTH = 60.000000 KIP/IN**2
MODULUS OF ELASTICITY OF STEEL = 29000.000000 KIP/IN**2

NUMBER OF REINFORCING BARS = 12
NUMBER OF ROWS OF REINFORCING BARS = 7
COVER THICKNESS = 3.000 IN

SQUASH LOAD CAPACITY = 2643.50 KIP
ROW AREA OF DISTANCE TO
NUMBER REINFORCEMENT  CENTROIDAL AXIS
IN**2 IN
1 »790000 12.0000
2 1.580000 10.3923
3 1.580000 6.0000
4 1.580000 .0000
5 1.580000 -6.0000
6 1.580000 -10.3923
7 . 790000 -12.0000
OUTPUT RESULTS FOR AN AXIAL LOAD = 50.00 KIP
eidd A g L e S I e sy
MOMENT EI PHI MAX STR N AXIS
IN-KIP KIP-IN**2 1/IN IN/IN IN

153.941 .15394E+09 .000001 .00003 33.870

765.633 .15313E+09 .000005 .00009 18.860
1364.857 .15165E+09 .000009 .00015 17.192
1364.857 .10499E+09 .000013 .00016 12.334
1364.857 .80286E+08 .000017 .00020 11.553
1364.857 .64993E+08 .000021 .00023 11.048
1364.857 -54594E+08 .000025 .00027 10.696
1517.223 +.52318E+08 .000029 .00030 10.444
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1678.489 .50863E+08 .000033 .00034 10,238

1839.116 -49706E+08 .000037 .00037 10.079
1999.618 -48771E+08 .0000412 .00041 9.965
2158.825 +47974E+08 .000045 .00044 9.859
2317.381 -47293E+08 .000049 .00048 9.772
2475.348 -46705E+08 .000053 .00051 9.701
3639.372 -43848E+08 .000083 .00078 9.441
4762.959 -42150E+08 .000113 .00106 9.375
5467.619 .38235E+08 .000143 .00131 9.170
5896.697 -34085E+08 .000173 .00155 8.955
6057.286 - 29839E+08 .000203 .00175 8.636
6206.912 -26639E+08 .000233 .00197 8.437
6340.834 -24110E+08: .000263 .00218 8.274
6466.427 .22070E+08 .000293 .00239 8.161
6519.455 .20184E+08 -000323 .00259 8.011
6547.419 -18548E+08 .000353 .00278 7.887
6568.075 -17149E+08 .000383 .00297 7.753
6587.674 -15951E+08 .000413 -00316 7.644
6606.533 -14913E+08 .000443 -00335 7.552
6606.533 -13967E+08 .000473 -00355 7.500
6631.914 .13185E+08 .000503 .00376 7.480
6639.605 -12457E+08 .000533 .00396 7.434

THE ULTIMATE BENDING MOMENT AT A CONCRETE STRAIN OF 0.003
Is : -657E+04 IN-KIP

EXAMPLE 6 ANALYSES RELATED TO DESIGN OF CONCRETE PILES

UNITS--ENGL

INPUT INFORMATION

*********************!***********

THE LOADING IS STATIC

PILE GEOMETRY AND PROPERTIES
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PILE LENGTH = 360.00 IN
MODULUS OF ELASTICITY OF PILE = +320E+04 KIP/IN**2
1 SECTION(S)
X DIAMETER MOMENT OF AREA
INERTIA
IN IN IN**4 IN**2
.00
30.000 .398E+05 .707E+03
360.00
SOILS INFORMATION

X-COORDINATE AT THE GROUND SURFACE = .00 IN
SLOPE ANGLE AT THE GROUND SURFACE = .00 DEG.
2 LAYER(S) OF SOIL
LAYER 1
THE LAYER IS A SAND
X AT THE TOP OF THE LAYER = .00 IN
X AT THE BOTTOM OF THE LAYER = 360.00 IN

VARIATION OF SOIL MODULUS, k

LAYER 2

THE LAYER IS A STIFF CLAY ABOVE THE WATER TABLE

X AT THE TOP OF THE LAYER =
X AT THE BOTTOM OF THE LAYER
VARIATION OF SOIL MODULUS, k

360.00 IN
= 540.00 IN
=

DISTRIBUTION OF EFFECTIVE UNIT WEIGHT WITH DEPTH

4 POINTS
X,IN WEIGHT,LBS/IN**3
.00 «.69E-01
360.00 .69E-01
360.00 .34E-01
540.00 «34E-01
DISTRIBUTION OF STRENGTH PARAMETERS WITH DEPTH
4 POINTS
X,IN C,LBS/IN**2 PHI,DEGREES
.00 .000E+00 38.000
360.00 .000E+00 38.000
360.00 .100E+02 .000
540.00 .100E+02 .000
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+900E+02 LBS/IN**3

+500E+03 LBS/IN**3

«500E-02
.500E-02



FINITE DIFFERENCE PARAMETERS
NUMBER OF PILE INCREMENTS

TOLERANCE ON DETERMINATION OF DEFLECTIONS
MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR PILE ANALYSIS

MAXIMUM ALLOWABLE DEFLECTION

INPUT CODES
OUTPT
KCYCL
KBC
KPYOP
INC

neunuown
(o Y Sy Sy

EXAMPLE 6 ANALYSES RELATED TO DESIGN OF CONCRETE PILES

UNITS-~ENGL

OUTPUT INFORMATTIO N

**************t**************t*t***

GENERATED P-Y CURVES
THE NUMBER OF CURVE IS

THE NUMBER OF POINTS ON EACH CURVE

DEPTH BELOW GS DIAM
IN IN
20.00 30.00

Y

IN
.000
.042
.083
.125
.167
.208
.250
.292
.333
.375
-417
.458
.500
1.125
31.125
61.125
91.125

PHI

38.0

268

LBS/IN**3
.7E-01

P

LBS/IN
.000
75.000
150.000
225.000
300.000
365.158
384.822
402.273
418.027
432.435
445.743
458.134
469.747
638.676
638.676
638.676
638.676

A

2.36

100
.100E-04 1IN

100
«.15E+03 1IN

1.73



DEPTH BELOW GS
IN
60.00

DEPTH BELOW GS
IN
100.00

DEPTH BELQW GS
IN

DIAM
IN
30.00

DIAM
IN
30.00

DIAM
IN

Y

IN
.000
.042
.083
.125
+167
.208
.250
.292
.333
.375
<417
.458
+500
1.125
31.125
61.125
91.125

IN
.000
.042
.083
.125
.167
.208
.250
.292
.333
.375
.417
.458
.500

1.125

31.125

61.125

91.125

PHI
38.0

PHI
38.0

PHI

GAMMA
LBS/IN**3

.7E-

01

P
LBS/IN
.000
225.000
450.000
675.000
900.000
1125.000
1216.512
1279.527
1336.746
1389.336
1438.131
1483.745
1526.650
2151.850
2151.850
2151.850
2151.850

GAMMA
LBS/IN**3

.7E-

G
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01

P
LBS/IN
.000
375.000
750.000
1125.000
1401.127
1545.320
1674.083
1791.286
1899.424
2000.215
2094.899
2184.406
2269.455
3514.745
3514.745
3514.745
3514.745

AMMA
LBS/IN**3

A

1.48

A
1.01

1.05

.65



150.00

PILE LOADING CONDITION

LATERAL LOAD AT PILE HEAD
APPLIED MOMENT AT PILE HEAD

AXIAL LOAD AT PILE HEAD

X DEFLECTION

IN IN

KRRAN AAXXANARR A
.00 -110E+00
3.60 -106E+00
7.20 +103E+00
10.80 .989E-01
14.40 .951E-01
18.00 .914E-01
21.60 .877E-01
25.20 0841E-°1

30.00 38.0  .7E-01 .88 .50
Y P
IN LBS/IN
.000 .000
.042 562.500
.083 1125.000
.125 1558.341
.167 1856.202
.208 2125.918
.250 2375.137
.292 2608.509
.333 2829.120
.375 3039.150
.417 3240.206
.458 3433.519
.500 3620.052
1.125 6371.292
31.125 6371.292
61.125 6371.292
91.125 6371.292
------- E 2 2] - - - -
= .200E+02 KIP
= .000E+00 IN-KIP
= .500E+02 KIP
MOMENT TOTAL SHEAR  SOIL FLEXURAL
STRESS RESIST  RIGIDITY
IN-KIP  LBS/IN**2 KIP  LBS/IN  KIP-IN**2
AR AR R NN RRRNRREN R & RRENXRNN RN L2 2222222 RRRRXNN RN NN
-000E+00  .707B+02  .201E+02  .000E+00 .153E+09
-000E+00  .707E+02  .200E+02  .345E+02  .153E+09
-144E+03  .125B+03  .198E+02  .665E+02  .153E+09
-215E+03  .152E+03  .195E+02 .961F+02  .153E+09
-284E+03  .178E+03  .191B+02 .123E+03  .153E+09
-352E+03  .204E+03  .186E+02  .148E+03  .153E+09
-415E+03  .2298+403  .180E+02 .171E+03  .153E+09
-482E+03  .253B+03  .174E+02  .191E+03  .153E+09
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28.80
32.40
36.00
39.60
43.20
46.80
50.40
54.00
57.60
61.20
64.80
68.40
72.00
75.60
79.20
82.80
86.40
80.00
93.60
97.20
100.80
104.40
108.00
111.60
115.20
118.80
122.40
126.00
129.60
133.20
136.80
140.40
144.00
147.60
151.20
154.80
158.40
162.00
165.60
169.20
172.80
176.40
180.00
183.60
187.20
190.80
194.40
198.00
201.60
205.20
208.80
212.40

.805E-01
.769E-01
.734E-01
.700E-01
.666E-01
.633E-01
.600E-01
.568E-01
.537E-01
.507E-01
.477E-01
.448E-01
.421E-01
.394E-01
.368E-01
.343E-01
.318E-01
.295E-01
.273E-01
.251E-01
«231E-01
.211E-01
.192E-01
«174E-01
.157E-01
.141E-01
.126E-01
.112E-01
.984E-02
.857E-02
.738E-02
.627E-02
.523E-02
.426E-02
.337E-02
+254E-02
.177E-02
.107E-02
.430E-03
-.154E-03
~.684E-03
-.116E-02
-.159E-02
-.197E-02
-.231E-02
-.260E-02
~.286E-02
-.308E-02
-.326E-02
-.342E-02
-.354E~02
-.363E-02

.544E+03
.603E+03
.658E+03
.711E+03
.761E+03
.807E+03
.849E+03
.889E+03
«.924E+03
.956E+03
.984E+03
.101E+04
.103E+04
.105E+04
.106E+04
.107E+04
.108E+04
.108E+04
.109E+04
.108E+04
.108E+04
.107E+04
.106E+04
.105E+04
.103E+04
.102E+04
.999E+03
.978E+03
.956E+03
.932E+03
.907E+03
.881E+03
.853E+03
.825E+03
. 796E+03
.76 7E+03
.737E+03
.706E+03
.676E+03
.645E+03
.615E+03
.584E+03
.554E+03
.524E+03
.495E+03
.466E+03
.437E+03
.410E+03
.383E+03
.357E+03
.331E+03
.307E+03

.276E+03
.298E+03
.319E+03
+339E+03
.358E+03
+375E+03
.391E+03
.406E+03
+.419E+03
.431E+03
.442E+03
.451E+03
.459E+03
.466E+03
.471E+03
.475E+03
.478E+03
.480E+03
.480E+03
.480E+03
.478E+03
.475E+03
.471E+03
.466E+03
.461E+03
.455E+03
.447E+03
.440E+03
.431E+03
.422E+03
.413E+03
.403E+03
«393E+03
.382E+03
«.371E+03
+360E+03
«.349E+03
«337E+03
.326E+03
.314E+03
.303E+03
.291E+03
.280E+03
.268E+03
.257E+03
+246E+03
.236E+03
.225E+03
.215E+03
.205E+03
.196E+03
.186E+03

.166E+02
.159E+02
.150E+02
.141E+02
+.132E+02
.123E+02
.113E+02
.103E+02
.933E+01
.833E+01
.733E+01
.633E+01
.534E+01
«437E+01
.342E+01
.248E+01
.158E+01
. 704E+00
-.139E+00
.948E+00
.172E+01
«.245E+01
.315E+01
.380E+01
+.441E+01
.497E+01
.S550E+01
.S97E+01
.641E+01
.680E+01
.715E+01
.745E+0Q1
«772E+01
.794E+01
.813E+01
.827E+01
.838E+01
.846E+01
.850E+01
.850E+01
.848E+01
.843E+01
.835E+01
.824E+01
.811E+01
.796E+01
-.779E+01
-.760E+01
-.740E+01
-.718E+01
-.695E+01
~.670E+01
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.209E+03
.224E+03
.238E+03
.249E+03
«.259E+03
.266E+03
.272E+03
.276E+03
.278E+03
.279E+03
.278E+03
.276E+03
.273E+03
.268BE+03
.262E+03
.255E+03
.247E+03
.239E+03
.230E+03
.220E+03
.209E+03
.198E+03
.187E+03
.175E+03
.163E+03
.151E+03
.139E+03
.127E+03
.115E+03
.103E+03
.909E+02
.792E+02
.678E+02
.566E+02
.458E+02
«354E+02
.253E+02
.156E+02
.641E+01
-.235E+01
-.106E+02
~-.184E+02
-.258E+02
-.326E+02
-.389E+02
-.447E+02
-.500E+02
=.549E+02
-.592E+02
-.631E+02
-.665E+02
-.694E+02

.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+Q9
.153E+09
<153E+09



216.00
219.60
223.20
226.80
230.40
234.00
237.60
241.20
244.80
248.40
252.00
255.60
259.20
262.80
266.40
270.00
273.60
277.20
280.80
284.40
288.00
291.60
295.20
298.80
302.40
306.00
309.60
313.20
316.80
320.40
324.00
327.60
331.20
334.80
338.40
342.00
345.60
349.20
352.80
356.40
360.00

COMPUTED LATERAL FORCE AT PILE HEAD

-.370E-02
-.374E-02
-.376E-02
~-.376E-02
-.375E-02
-.371E-02
-.367E-02
-.360E-02
-.353E-02
=-.344E-02
-.335E-02
-.324E-02
-.313E-02
~.302E-02
-.289E-02
~.277E-02
-.263E-02
-.250E-02
-.236E-02
-.222E-02
-.208E-02
=-.194E-02
-.180E-02
-.166E-02
-.151E-02
~.137E-02
-.123E-02
-.109E-02
-.944E~-03
-.802E-03
-.661E-03
-.521E-03
-.381E-03
-.241E-03
-.102E-03

.374E-04

.176E~03

.315E-03

+453E-03

+592E-03

. 730E-03

.283E+03
.260E+03
.238E+03
.218E+03
.198E+03
.179E+03
.161E+03
«144E+03
.129E+03
.114E+03
.100E+03
.873E+02
.755E+02
.646E+02
.547E+02
.456E+02
.375E+02
.301E+02
.236E+02
.179E+02
.129E+02
.857E+01
.492E+01
.190E+01
-.552E+00
-.247E+01
-.389E+01
-.487E+01
-.546E+01
-.570E+01
-.563E+01
-.532E+01
-.481E+01
-.415E+01
-.340E+01
-.260E+01
-.183E+01
-.112E+01
-.539E+00
.000E+00
.000E+00

.177E+03
.169E+03
«161E+03
.153E+03
«145E+03
.138E+03
.131E+03
+125E+03
.119E+03
-114E+03
.108E+03
.104E+03
«992E+02
.951E+02
.913E+02
.879E+02
.B49E+02
.821E+02
. 796E+02
< T75E+02
.756E+02
«740E+02
. 726E+02
«T14E+02
+709E+02
+717E+02
. T22E+02
+«726E+02
. 728E+02
- 729E+02
. 728E+02
«T27E+02
. 725E+02
. T23E+02
. 720E+02
.717E+02
. 714E+02
+711E+02
.709E+02
. 707E+02
.707E+02

COMPUTED MOMENT AT PILE HEAD

COMPUTED SLOPE AT PILE HEAD

THE OVERALL MOMENT IMBALANCE
THE OVERALL LATERAL FORCE IMBALANCE

OUTPUT SUMMARY

-.645E+01
~-.618E+01
-.592E+01
-.564E+01
-.536E+01
-.508E+01
-.480E+01
-.452E+01
-.424E+01
-.396E+01
-.368E+01
-.341E+01
-.315E+01
-.289E+01
-.263E+01
-.239E+01
-.215E+01
-.192E+01
-.170E+01
-.149E+01
-.129E+01
-.110E+01
-.925E+00
-.758E+00
-.604E+00
-.462E+00
-.332E+00
-.216E+00
-.112E+00
-.222E-01

.542E-01

.117E+00

«165E+00

.198E+00

.217E+00

«220E+00

. 208E+00

.181E+00

«137E+00

.000E+00

.000E+00
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-.719E+02
~-.740E+02
-.756E+02
-.769E+02
-.777E+02
~.782E+02
~-.784E+02
-.782E+02
-.777E+02
-.770E+02
-.759E+02
~-.746E+02
-.731E+02
-.713E+02
-.694E+02
-.672E+02
-.649E+02
-.624E+02
-.597E+02
-.569E+02
~-.540E+02
-.510E+02
-.478E+02
-.445E+02
-.412E+02
-.378E+02
~.342E+02
-.306E+02
-.269E+02
-.231E+02
~.193E+02
-.154E+02
=.113E+02
-.726E+01
~.310E+01

.115E+01

.548E+01

«990E+01

«144E+02

«190E+02

.237E+02

.20000E+02
.00000E+00
.10473E-02

.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
-153E+09
.153E+09
.153E+09
«153E+09
.153E+09
.153E+09
.153E+09
«153E+09
.153E+09
.153E+09
.153E+09
.153E+09

KIP
IN-KIP

-.813E-08 IN-KIP

+129E-06 LBS



PILE HEAD DEFLECTION
MAXIMUM BENDING MOMENT
MAXIMUM TOTAL STRESS

NO. OF ITERATIONS
MAXIMUM DEFLECTION ERROR

PILE LOADING CONDITION

LATERAL LOAD AT PILE HEAD
APPLIED MOMENT AT PILE HEAD

AXIAL LOAD AT PILE HEAD

X DEFLECTION

IN IN

EERXE RRRRRKRRNR
.00 .337E+00
3.60 .323E+00
7.20 +309E+00
10.80 .296E+00
14.40 .282E+00
18.00 .269E+00
21.60 .255E+00
25.20 +242E+00
28.80 .228E+00
32.40 .215E+00
36.00 .202E+00
39.60 .189E+00
43.20 .176E+00
46.80 .164E+00
50.40 .152E+00
54.00 .141E+00
57.60 .130E+00
61.20 «.119E+00
64.80 .109E+00
68.40 .991E-01
72.00 .899E-01

MOMENT
IN-KIP

ARRRRRIRRE
.000E+00
.000E+00
+289E+03
.431E+03
.570E+03
.707E+03
.838E+03
.964E+03
.108E+04
.120E+04
.130E+04
-140E+04
.148E+04
.156E+04

+«163E+04.

.169E+04
.174E+04
.178E+04
.182E+04
.184E+04
.186E+04

.110E+00 IN
.112E+04 IN

-KIP

.493E+03 LBS/IN**2

6
.461E-07

RERX  ammvcme=

IN

.400E+02 KIP
.000E+00 IN-KIP
.500E+02 KIP

TOTAL SHEAR  SOIL FLEXURAL
STRESS RESIST  RIGIDITY
LBS/IN**2 KIP  LBS/IN  KIP-IN**2
RRARARRRNR ARRRRRRIRRT KRR RRRRRR RN R N
.707E+02  .402E+02  .000E+00  .153E+09
.707E+02  .401E+02 .608E+02 .153E+09
.180E+03  .396E+02  .128E+03 .153E+09
.233E+03  .390E+02  .199E+03  .153E+09
.286E+03  .381E+02  .272E+03  .153E+09
.337E+03  .370E+02  .348E+03  .153E+09
.387E+03  .356E+02  .423E+03  .153E+09
.435E+03  .340E+02  .497E+03  .153E+09
.480E+03  .320E+02  .568E+03  .152E+09
.522E+03  .299E+02  .628E+03  .152E+09
.561E+03  .276E+02  J655E+03  .152E+09
.597E+03  .252E+02  .674E+03  .541E+08
.630E+03  .227E+02  .686E+03  .528E+08
.660E+03  .203E+02  .691E+03  .519E+08
.686E+03 - .178E+02 .690E+03  .513E+08
.708E+03  .153E+02 .684E+03  .508E+08
.728E+03  .129E+02  .672E+03  .504E+08
.744E+03  .105E+02  .655E+03  .501E+08
.757E+03  .815E+01  .634E+03  .498E+08
.766E+03  .591E+01  .610E+03  .496E+08
.773E+03  .377E+01  .582E+03  .495E+08
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75.60

79.20

82.80

86.40

90.00

93.60

97.20
100.80
104.40
108.00
111.60
115.20
118.80
122.40
126.00
129.60
133.20
136.80
140.40
144.00
147.60
151.20
154.80
158.40
162.00
165.60
169.20
172.80
176.40
180.00
183.60
187.20
190.80
194.40
198.00
201.60
205.20
208.80
212.40
216.00
219.60
223.20
226.80
230.40
234.00
237.60
241.20
244.80
248.40
252.00
255.60
259.20

.811E~-01
. 729E-01
.651E-01
.579E-01
.511E~-01
.448E-01
.390E-01
.337E-01
.288E-01
+243E-01
.203E-01
-167E-01
-135E-01
.108E-01
.835E~02
.629E-02
.458E-02
.320E-02
.193E-02
+765E-03
~-.297E-03
-.126E-02
-.213E-02
-.291E-02
~.361E-02
~.423E-02
-.477E-02
-.524E-02
-.565E-02
-.599E~02
-.628E-02
-.651E=-02
-.669E~02
-.682E-02
-.691E-02
-.696E-02
-.697E~02
~.695E-02
-.690E-02
-.682E-02
-.672E-02
-.660E-02
=-.645E-02
-.629E-02
-.611E-02
-.592E-02
-.572E-02
-.551E~02
~.529E-02
-.506E-02
-.483E-02
-.460E-02

.187E+04
.187E+04
.187E+04
.186E+04
.185E+04
.182E+04
.180E+04
.177E+04
.173E+04
.169E+04
.165E+04
.161E+04
.156E+04
«151E+04
.147E+04
+141E+04
«136E+04
.131E+04
.126E+04
.120E+04
.115E+04
.110E+04
-104E+04
.990E+03
.938E+03
.886E+03
.835E+03
.786E+03
.737E+03
.689E+03
.643E+03
.597E+03
-554E+03
.512E+03
.471E+03
-432E+03
«394E+03
.359E+03
«324E+03
.292E+03
.261E+03
.233E+03
.205E+03
.180E+03
.156E+03
.134E+03
.113E+03
. 944E+02
. 770E+02
-612E+02
.469E+02
-340E+02

< T77E+03
. 778E+03
+777E+03
- 773E+03
.76 7E+03
+ 759E+03
. 749E+03
. 737E+03
< 724E+03
. 710E+03
.694E+03
.678E+03
.660E+03
.642E+03
.624E+03
.604E+03
.585E+03
-565E+03
+545E+03
+525E+03
«505E+03
.484E+03
+464E+03
+444E+03
+425E+03
+405E+03
-386E+03
.367E+03
+349E+03

-+331E+03

+313E+03
.296E+03
- 280E+03
+264E+03
+248E+03
+234E+03
«219E+03
.206E+03
-193E+03
.181E+03
.169E+03
+158E+03
.148E+03
+139E+03
.130E+03
+121E+03
.113E+03
.106E+03
. 998E+02
+938E+02
+884E+02
.836E+02

.172E+01
.205E+00
.201E+01
.370E+01
.525E+01
.668E+01
-797E+01
.914E+01
-.102E+02
-.111E+02
-.119E+02
-.126E+02
-.131E+02
-.136E+02
-.140E+02
-.143E+02
-.145E+02
-.147E+02
=-.148E+02
-.149E+02
=.149E+02
-.148E+02
-.148E+02
-.146E+02
-.145E+02
~.142E+02
-.140E+02
-.137E+02
~.134E+02
-.131E+02
-.127E+02
-.123E+02
-.119E+02
-.115E+02
-.111E+02
-.106E+02
-.102E+02
-.970E+01
~.923E+01
~-.875E+01
-.827E+01
-.780E+01
-.732E+01
-.685E+01
-.638E+01
-.592E+01
-.547E+01
-.503E+01
-.460E+01
-.418E+01
-.377E+01
-.338E+01
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+552E+03
.520E+03
.485E+03
.450E+03
+.414E+03
.378E+03
.341E+03
.305E+03
.270E+03
«236E+03
«204E+03
.173E+03
«145E+03
.119E+03
+946E+02
+734E+02
+550E+02
«394E+02
« 244E+02
+991E+01
~.395E+01
=-.172E+02
~.297E+02
=-.415E+02
-.526E+02
-.630E+02
=-.727E+02
~.815E+02
-.897E+02
=-.971E+02
-.104E+03
-.110E+03
-.115E+03
-.119E+03
-.123E+03
~-.126E+03
~.129E+03
-.131E+03
-.132E+03
=.133E+03
=.133E+03
-.132E+03
-.132E+03
=.130E+03
-.129E+03
-.127E+03
~.124E+03
-.121E+03
~.118E+03
~.115E+03
-.111E+03
-.107E+03

.495E+08
.494E+08
.495E+08
.495E+08
.496E+08
.497E+08
.499E+08
.S01E+08
.503E+08
.506E+08
.509E+08
.513E+08
.517E+08
.521E+08
+.527E+08
.534E+08
.542E+08
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
.152E+09
+152E+09
.153E+09
.153E+09
.153E+09
.153E+0%
«153E+0¢
«153E+09
-153E+09
.153E+09
«153E+0%
«153E+09
.153E+09
«153E+09
«153E+09
-153E+09
«153E+09
.153E+09
«153E+09
«153E+09
«153E+09
-153E+09
«153E+0¢
«153E+0¢
«153E+0%
«153E+09
.153E+0¢
-153E+0¢
.153E+09
+153E+Q¢



262.80
266.40
270.00
273.60
277.20
280.80
284.40
288.00
291.60
295.20
298.80
302.40
306.00
309.60
313.20
316.80
320.40
324.00
327.60
331.20
334.80
338.40
342.00
345.60
349.20
352.80
356.40
360.00

-.436E-02
-.412E-02
-.388E-02
~.364E-02
-.340E-02
-.316E~-02
-.292E-02
-.268E~-02
-.245E-02
~.222E-02
-.199E-02
-.176E-02
-.153E-02
-.131E-02
-.109E-02
-.871E-03
-.654E-03
~.440E-03
-.227E~03
-.161E-04

.194E-03

.403E~03

.611E~-03

.819E~03

.103E-02

.123E-02

+144E-02

.165E-02

.225E+02

«124E+02

«353E+01
-.412E+01
-.106E+02
-.160E+02
-.203E+02
-.237E+02
-.262E+02
~.279E+02
-.287E+02
-.289E+02
-.285E+02
-.276E+02
-.261E+02
-.243E+02
-.221E+02
-.197E+02
-.171E+02
=-.145E+02
-.118E+02
-.919E+01
-.676E+01
-.457E+01
-.271E+01
-.127E+01

.000E+00

.000E+00

.792E+02
. 754E+02
+721E+02
. 723E+02
. 747E+02
. 768E+02
« 784E+02
«797E+02
.806E+02
.812E+02
+816E+02
.816E+02
.815E+02
.811E+02
.806E+02
- 799E+02
«791E+02
. 782E+02
. 7T72E+02
«762E+02
+752E+02
. 742E+Q2
.733E+02
. 724E+02
. 717E+02
. 712E+02
.707E+02
«707E+02

COMPUTED LATERAL FORCE AT PILE HEAD
COMPUTED MOMENT AT PILE HEAD )
COMPUTED SLOPE AT PILE HEAD

THE OVERALL MOMENT IMBALANCE

~.300E+01
=.264E+01
~.229E+01
-.196E+01
-.165E+01
-.135E+01
-.107E+01
-.812E+00
~-.571E+00
=.349E+00
-.147E+00
.348E-01
.197E+00
«339E+00
.459E+00
.559E+00
.638E+00
.695E+00
. 730E+00
. 743E+00
. 734E+00
.701E+00
.645E+00
.565E+00
+461E+00
.333E+00
.000E+00
.000E+00

-.103E+03
-.988E+02
-.943E+02
-.896E+02
-.848E+02
~-.798E+02
-.747E+02
-.695E+02
-.642E+02
-.589E+02
-.534E+02
-.478E+02
-.422E+02
-.365E+02
-.307E+02
-.248E+02
-.189E+02
-.128E+02
-.670E+01
~.480E+00

.584E+01

.123E+02

.188E+02

.255E+02

«323E+02

«392E+02

.462E+02

.534E+02

.40000E+02

.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
.153E+09
<153E+09

KIP

.00000E+00 IN-KIP

+37926E-02

.519E-08 IN-KIP

THE OVERALL LATERAL FORCE IMBALANCE .885E-07 LBS
OUTPUT SUMMARY
PILE HEAD DEFLECTION = «.337E+00 IN
MAXTMUM BENDING MOMENT = -217E+04 IN-KIP
MAXIMUM TOTAL STRESS = +890E+03 LBS/IN**2
NO. OF ITERATIONS = 13
MAXIMUM DEFLECTION ERROR = +435E-05 IN
SUMMARY TABLE
ARRERRARRENEARRARRRRR AR AR
LATERAL BOUNDARY AXIAL MAX. MAX.
LOAD CONDITION LOAD YT ST MOMENT STRESS
(KIP) BC2 {KIP) (IN) (IN/IN) (IN-KIP) (LBS/IN**2)
.200E+02 .000E+00 .500E+02 .110E+00 -.105E-02 «112E+04 .493E+03
.400E+02 .000E+00 .500E+02 .337E+00 -.379E-02 .217E+04 .890E+03
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COM624P
LATERALLY LOADED PILE ANALYSIS PROGRAM

FOR THE MICROCOMPUTER
Version 2.0

Part 1II: Background



CHAPTER 1. INTRODUCTION

The documentation for Computer Program COM624P consists of
three documents: Part I, Users Guide; Part I1 Engineering
Background; and Part III, Systems Maintenance.

The information shown in this document is limited to that
needed for the operation of the computer program and to a brief
introduction of the nature of the method of analysis. The user is
referred to two documents published by the Federal Highway
Administration for a relatively complete treatment of the topic
(FHWA-IP-84-11 and FHWA/RD-85/106). A study of those publications
and some of the papers that are cited therein will be necessary
for the engineer to make proper use of COM624P. This program does
not provide an "automatic" solution to the problem of the pile
under lateral 1loading; rather, decisions of an experienced
engineer are required in the selection of appropriate input and in
the analysis of output of the program.

NATURE OF THE PROBLEM

The analysis of a pile under lateral loading is a problem in
soil-structure interaction; that is, the deflection of the pile is
dependent on the soil response and the soil response is a function
of pile deflection. Thus, the problem cannot be solved by the
equations of static equilibrium, but a differential equation must
be solved to obtain the deflection of the pile. Iteration must be
employed because the soil response is a nonlinear function of pile
deflection and of position along the length of the pile.
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D £ Soil I

The definition of soil response is given in Fig. 1.1. Figure
l.la is an elevation view of a section of a pile with the depth
identified at which the soil response is investigated. Figure 1.1b
gives the distribution of unit stresses around the pile after its
installation and before load is applied; if the pile has been
installed without bending, there is no unbalanced force acting.
If the pile is caused to deflect through a distance Va4l
(exaggerated here for clarity of presentation), the unit stresses
may be as shown in Fig. 1.1c. The unit stress has decreased on
the back side of the pile and has increased on the front side.
The unbalanced force is now pi1, in units of force per unit of

length along the pile, and can be found by integrating the unit
stresses.

A nonlinear relationship exists between P and y because, at
some deflection y, the soil response p will reach a limit and
remain constant, or perhaps decrease, with further deflection.
The nonlinear curve relating the soil response and the pile
deflection is termed a pP-y curve. A family of p-y curves can be
generated by methods discussed later and it is evident that the
curves can vary in any arbitrary manner along the length of the
pile.

Definit; £ S0il Modul

The soil modulus, as employed in the solution of the
laterally-loaded pile, is defined as p divided by y, has the units
of force per length Squared, and is given the symbol Es. Thus, Eg
can be characterized as a nonlinear spring whose stiffness is
largest with small deflection and decreases as the deflection of
the pile increases.
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Ground Surface
? » y
X1
(a)

(b) (c)

Figure 1.1. Definition of p and y (after Reese, 1983).
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The left-hand portion of Fig. 1.2 shows the upper portion of
a pile with three p-y curves in conceptual form. The curves are
plotted in the second and fourth quadrants because the soil
response is opposite in sign to pile deflection. The pile is
assumed to be subjected to a lateral load Pt at its top. Dashed
lines are drawn to show the possible deflection of the pile under
two different loadings with the curvature in the deflection being
ignored for ease in presentation, For each of the p-y curves,
dotted lines are drawn to the intersection of the deflection with
the p-y curve. The slope of these dotted lines indicates the
magnitude of the soil modulus Es at each of the particular points
along the pile and at each particular deflection of the pile.

The right-hand portion of the sketch shows a plot of Eg as a
function of distance x along the pile. As may be seen, Eg is some
arbitrary function of x and y for any particular lateral load Pt
at the top of the pile. The figure suggests that: a solution of
the problem cannot in general be based on some presumed variation
of Eg as a function of x; that Eg is not a property of the soil
but is merely a fitting function to be determined; that the
ability to formulate p-y curves is essential to a solution; that
iteration will invariably be necessary; and that a computer
program is essential.

A method of analysis employed in some engineering offices
starts with the selection of a depth below the groundline at which
the pile is assumed to be fixed against rotation. No soil is
assumed to exist along the pile above that point; thus, the pile
in soil 1is replaced by a cantilever beam, and solving for
deflection and bending moment proceeds by using the ordinary
equations of mechanics. 1If, by chance, the depth to the point of
fixity was selected correctly, the computed maximum bending moment
would agree with the actual maximum moment, but the distribution

of bending moment along the pile would certainly be incorrect.
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Figure 1.2. Concept of determination of soil modulus
as a function of distance along pile.
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Furthermore, the selection of a point of fixity (such that both
the maximum deflection and the maximum bending both were computed
correctly) would be a virtual impossibility. Thus, no guidelines
can be developed for selecting a point of fixity that would allow
the response of a Pile to be computed accurately. This discussion
is for the purpose of reinforcing the desirability of using the p-
Yy method of analysis as presented herein.

DESIGN BY FACTORING THE LOAD

A pile under lateral load, and some amount of axial load as
well, must be selected so that it has an appropriate factor of
safety against collapse due to bending and against excessive
deflection. 1If a curve were to be developed for bending moment or
deflection, the Curve would be nonlinear with respect to the
lateral 1load. Thus, the preferred method of design of the pile is
to find the factored load that will cause the pile to "fail." The
factor is selected so as to provide an appropriate factor of
safety with respect to load. If the allowable-stress approach is
used, the 1load that produced the allowable stress could be
increased only a small percentage and failure might occur because
of the response of the nonlinear p~-y curves.

The load-factor approach requires that the cross section of
the pile be analyzed to determine the ultimate moment that will
cause the development of a Plastic hinge. Such values are
tabulated for structural shapes, and computer programs are
available to analyze composite sections, such as a reinforced-
concrete section. The determination of some magnitude of
deflection that will cause a failure is less straightforward.
There may be some structures that are sensitive to deflection for
a site-specific reason, and the load-factor method can be used to
reduce the load that results in excessive deflection to a safe
lateral load. '
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Another type of failure can be investigated by COM624P. The
equation that is programmed and described later defines the
behavior of a beam-column so that one of the input parameters is
axial load. Some piles may extend some distance above the
groundline so that buckling may be a problem. The failure of the
pile in buckling can be investigated by holding the factored
lateral 1load constant and by increasing the axial load in
increments until the deflection becomes excessive. It is important
that the axial load be increased in small increments because the
procedure that is employed behaves erratically at loads above the
buckling load.

NATURE OF LOADING

In respect to lateral 1loading, four kinds of loads are
encountered in practice: short-term, repeated, sustained, and
seismic or dynamic. . The engineer must select the soil-response
curves to be used in a particular design by giving careful
consideration to the nature of the loading.

Static Loadi

Short-term or static loading is frequently employed in a
field test in order to obtain the response of a soil that can be
correlated with the engineering properties of the soil. The p-y
curves for static loading, thus, are a sort of "backbone" response
by which the response of a pile to other sorts of loading can be
judged. In some instances, the static p-y curves can be used in
design. Methods of predicting p-y curves for static loading are

presented later.

289



cvelic Loads

Many structures are subjected to cyclic or repeated lateral
loads. Wind gusts are an example. Other examples are traffic loads
on curved bridges, braking loads, current and wave loads, and ice
loads. The p-y curves that are proposed for cyclic loading are
presented in a later section of this report. The proposals are
Strongly based on field experiments. Only a limited number of such
experiments have been performed and the judgment of an experienced
engineer is needed in ascertaining the magnitude of the load factor
that is appropriate. 1In some instances, field load tests at the
specific site are indicated.

Suatained Loadi

Retaining walls, bulkheads, and bridge abutments are subjected
to sustained leading. A pile in granular soil or heavily
overconsolidated clay can be expected to undergg only a small
amount of additional deflection, or perhaps none, depending on the
magnitude of the unit stresses that exist around the pile. On the
other hand, if the pile is installed in normally consolidated or
lightly overconsolidated clay, the time-related deflection due to
consolidation and creep may be significant. In concept, an analysis
could be accomplished by stretching the y-values on the P~y curves
an amount to accommodate the time-related displacement. However,
no analytical method has been proposed for making the adjustments
in the p~y curves.

The procedure that is suggested is to refer to any information
that may be found in the technical literature; for example to the
papers by Neukirchner and Nixon (1987), and Neukirchner (1987).
Also, the computer program can be utilized to obtain an estimate
under the working load of the lateral stresses against the soil.
The theory of consolidation can be employed to gain some insight
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into the possible additional, time-related deflection of the pile.
In this connection, some consideration must be given to the time-

related changes in the soil stresses.

An alternative procedure in important cases is to install a
test pile and subject it to sustained loading. The length of time
the load can be maintained would be limited, of course; however,
the additional deflection will decay exponentially so that it
would be possible to make an extrapolation to estimate the final
amount of additional deflection.

Dyaams Seismic  Loadi

There may be instances in the design of piles where the
lateral 1loading arises from vibration as from oscillating
machinery. Because the deflections of a pile would, in general,
be quite small due to the vibration, a constant value of soil
modulus as a function of deflection could be selected. The reader
is referred to technical literature on soil dynamics for guidance.
With regard to the response of the pile, inertia effects cannot be

ignored as is possible with static or with most cyclic loads.

A discussion of the design of a pile to sustain lateral
loading that could be generated by an earthquake is beyond the
scope of this report. The design may be made by a pseudo-static
method or, if a rational method is to be employed, the analysis
would start with an estimation of the free-field motion of the
surface soils at the site.
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INTERACTION OF THE PILES WITH THE SUPERSTRUCTURE

As shown later, the user of the program can select a variety
of sets of boundary conditions at the top of the pile. The
conditions of equilibrium and compatibility are satisfied by the
appropriate selection. If a pile extends upward to support a road
sign, the two boundary conditions consist of a shear and a moment.
If a pile extends upward to form a part of the superstructure, the
two boundary conditions consist of a shear and a rotational
restraint. In order to select the proper magnitude of the
rotational restraint, iteration between the pile foundation and

the superstructure is usually necessary.

If a pile extends upward and is embedded in a concrete mat
such as the base of a retaining wall, an acceptable solution in
some cases is to assume that the pile head is fully fixed againét
rotation. The second boundary condition, the shear, may be
selected by dividing the total lateral load of the wall by the
number of piles. There may be occasions when the deflection at the
pile head is one of the known boundary conditions. For example, a
bridge may be constructed in such a way that the lateral
deflection of the pile head is limited to a known amount.

In any case, the engineer must make a careful study of the
manner in which the piles interact with the entire structure sO
that the proper input to the program can be selected. A number of

trials may be necessary on occasion.
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INFLUENCE OF PILE LENGTH

The length of the pile that is employed in the analyses by
computer is an important consideration. An examination of the
output for the solution of the behavior of a long pile will show
that the deflection oscillates back and forth about the axis of
the lower portion of the pile so that there are a large number of
points of zero deflection. If the length of the pile is
arbitrarily shortened so that there are only two or three points
of zero deflection, a comparison of the two sets of results will
show that there is no difference in the groundline deflection or
in the magnitude of the maximum moment. As a matter of fact,
there is no discernible difference in the two solutions for the
portion of the pile above the first point of zero deflection.
Therefore, the engineer may wish to shorten the length of a pile
that is being analyzed in order to save computer time. This can
be done by examining the results of the first run to discover the
number of points of zero deflection. The length of the pile can
then be shortened so that there are two or three points of zero
deflection. |

On the other hand, if the total length of a pile is not
selected on the basis of axial loading but only on lateral
loading, it will be desirable to make a series of computer runs
with variation in the penetration of the pile. As shown in Fig.
1.3, a critical penetration will be found. At penetrations less
than the critical, the top of the pile will experience additional
deflection because the bottom of the pile is defiecting. The pile
is undergoing a "fence-posting" action, a condition that is

generally undesirable.
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Deflection
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Pile Penetration

Figure 1.3. Influence of pile penetration on
groundline deflection.

PILE GROUPS UNDER LATERAL LOADING

Single piles can be employed to support an overhead sign but
most piles are installed in groups. Two problems must be
addressed with respect to pile groups: the loss of efficiency due
to close spacing, and the distribution of the load from the
Superstructure to each of the supporting piles.

The second of these problems can be solved rationally if the
three nonlinear stiffnesses at the pile head; for axial load, for
lateral load, and for moment; can be defined. The result is the
vertical displacement, lateral displacement, and rotation of the
Superstructure and the corresponding movements at each of the pile
heads. The response of each of the piles is computed. The
solution is as accurate as the pile head stiffnesses can be
determined.

The problem of the interaction bétween groups of closely
spaced piles cannot be solved with the same assurance as can the
one described above. The theory of elasticity has been employed
to develop interaction factors, but experiments have shown that
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these factors can be seriously in error. Other methods have been
suggested but research has not yet developed sufficient
information to allow an engineer to make a confident prediction.
The behavior of piles in groups is discussed in the two FHWA

publications on laterally loaded piles mentioned earlier (FHWA,
1984; FHWA, 1986).

VERIFICATION OF ACCURACY OF TEE COMPUTER OUTPUT

Chapter 5 of this report is concerned in some detail with the
verification of the results of the computations. An important
consideration is that the results should be considered as
questionable until the engineer has done an independent study,
however brief, to verify the solution.

The computer will produce results in a short period of time
that would take weeks, or much longer, with the calculator.
Deflection, rotation, bending moment, shear, and soil resistance
are given point by point along the length of a pile, and the
equations of equilibrium and compatibility are automatically
satisfied. A series of loads can be input and the computer will
rapidly produce pile-head deflection and maximum bending moment as
a function of 1load. If desired, the results can be readily
displayed in graphical form.

The versatility and utility of the computer program are so
impressive that it is difficult not to accept the results as
correct; however, the engineer is well advised to question the
results and to adopt some routine means for verification. The
methods that are indicated in Chapter 5 should prove helpful and

the engineer may devise other methods that are applicable to local
situations.
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CHAPTER 2. BASIC THEORY OF COMPUTATION

THE DIFFERENTIAL EQUATION

The standard differential equation for the deflection of a
beam as presented in textbooks on mechanics provides the basis for
the analysis of most of the cases of piles under lateral loading.
The only adjustment that is needed to the basic equation is to
replace the distributed load p with the soil modulus Eg times the

pile deflection y (with a negative sign).

However, if the axial load is relatively large or if an
unsupported portion of the pile extends above the groundline, the
inclusion of the effect of the axial load in the differential
equation is necessary. The beam-column equation that is derived
can be used to investigate buckling and, for cases where the axial
load is applied at the groundline, will allow the additional
lateral deflection due to axial loading to be computed.

The derivation of the beam~column was done by Hetenyi (1946).
The pile is assumed to be replaced by a bar and a segment, bounded
by two horizontals a distance of dx apart, has been cut from the

bar as shown in Fig. 2.1. The segment has been displaced due to
lateral loading and a pair of vertical compressive forces Py are

acting at the center of gravity of the end cross sections of the

bar.

The equilibrium of moments (ignoring second-order terms)

leads to the equation:

(M + dM) - M + Pydy — Vydx = 0 (2.1)

or
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Figure 2.1.

. Element for beam-column (after Hetenyi, 1946).
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a dy

ax * Px gy - Vv = O. (2.2)

Differentiating Eq. 2.2 with respect to x, the following equation
is obtained:

d?M d2y dvy

The following identities are noted:,

d2M ddy

=—= = EI 2.4
dx2 dx4’ ( )
dv.

:;f = p, and (2.5)

And making the indicated substitutions, Eq. 2.3 becomes:

4 2
EI g;% + Py %;% + Egy = 0. (2.7)

The direction of the shearing force V,, is shown in Fig. 2.1.

The shearing force in the plane normal to the deflection line can
be obtained as:

Vhp = Vi, cos S - Py sin S. (2.8)

d
Because S is usually small, cos 8 = 1 and sin S = tan S = aﬁ.

Thus, Eg. 2.9 is obtained:
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Vn will mostly be used in computations but Vy can be computed from

Eq. 2.9 where dy/dx is equal to the rotation S.

The following assumptions are made in deriving the
differential equation:

- the pile has a longitudinal plane of symmetry; loads and
reactions lie in that plane,

-~ the modulus of elasticity of the pile material is the same
for tension and compression,

= transverse deflections of the pile are small,
=~ the pile is not subjected to dynamic loading, and
- deflections due to shearing stresses are negligible.

The sign conventions that are employed are shown in Fig. 2.2.
For ease of understanding, the sign conventions are presented for
a beam that is oriented like a pile. A solution of the
differential equation yields values of y as a function of x. A
family of curves can then be obtained as shown in Fig. 2.3 by
using the following basic equations:

3
daiy _
BT S5 =V (2.10)
2
EI 3_::% = M, and (2.11)
%ﬁ -5, (2.12)

where
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V = shear,
= bending moment of the pile, and
S = slope of the elastic curve.

SOLUTION TO THE GOVERNING DIFFERENTIAL EQUATION

Equation 2.7 is rewritten and shown as Eq. 2.13. The term W,
which is exactly similar to p, is added to allow a distributed
load to be placed along the pile as, for example, when the pile
extends above the groundline and is subjected to a distributed

load from water currents or wind. The term k is substituted for
Eg for ease in writing the equations.

d2M a2
e b, &Y kv - W =0 (2.13)
dx2 X 4x2 y

Equation 2.13 can be solved readily by using finite-
difference techniques. The deflection of the pile by finite
deflections is shown in Fig. 2.4. The finite difference
expressions for the first two terms of Eq. 2.13 at point m are:

d2m
(dxz) o [Ym—Z Rp-1 + ¥m-1 (~2Rp = 2Rp-1)

+ Ym (4Rm + Rp—1 + Rm+1)

1
* ¥m+1 (-2Rm - 2Rp+1) + ¥m+2Rmtl ] e (2-19)

. (gzz) _ Py (Ym-1 = 2¥m * ¥m+1) (2.15)
X = ' :
m

dx2 h?

where
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Figure 2.4. Representation of deflected pile.
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Rp flexural rigidity at point (m), that is,

Rm = Epln, (2.16)
Equations 2.14 and 2.15 are substituted for terms in Eq. 2.13
and the resulting equation for Point m along the pile and Eq. 2.17
results.
Ym-2 Rm-1 + ¥m-1 (-2Rp-p - 2Ry + Pyh2) + yp (Rm-1 + 4Rp
* Rm+1 = 2Pxh? + kph?) 4 ypyq (-2Rp - 2Rpy; + Pxh?)

+ Ym+2 Rm+1 - Wphé= 0. (2.17)

The axial force Py which produces compression is assumed to
be positive. Also, Py acts through the axis of the pile; thus, Py

causes no moment at the top of the pile.

Applying the boundary conditions at the bottom of the pile,
the solution to the differential equation in difference form can
proceed (Gleser, 1953).

Using the notation shown in Fig. 2.5, the two boundary

conditions at the bottom of the pile (point 0) are zero bending
moment,

2
(9-§)0 =0, (2.18)

and zero shear,

a3y dyy _
Rg (dx3)o + Py (dx)o 0. (2.19)
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Figure 2.5. Points at bottom of pile.
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For simplicity it is assumed that:
R_.1 = Rg = R;. (2.20)

These boundary conditions are, in finite difference form,

Y-1 - 2y9 + y;3 = 0, and ‘ (2.21)
P,h2 Pyh2
= - =L | _ o =x=
Y-2 = y-1 (2 Rg ) v1 ( Ro ) + y2, (2.22)
respectively. Substituting these boundary conditions in finite

difference form in Eq. 2.17 where m is equal to zero, and
rearranging terms, results in the following equations:

Yo = apyi1 - boy2 + dg, (2.23)

2Rg + 2Ry - 2th2

20 = Ro + Ry + koh? - 2p,n2 '
(2.24)
Rg + R
by = 0 ——l 5 » and (2.25)
Ro + Ry + kgh4 - 2P4h
Woh4

Ro + Ry + kgh4 - 2P,h2

Equation 2.17 can be expressed for all values of m other than
0 and the top of the pile by the following relationships:

Ym = am¥m+1l — PmYm+2 + dme (2.27)

306



where

boundary conditions are considered.

The top of the pile (m=t) is shown in Fig. 2.6.

~2bm-1Rm~1+am-2bm-1Rm-1+2Rn~2by— 1R+ 2R+ 1-Pxh? (1-bp-1)

Cm
(2.28)

Rm+]
bp = c; » and (2.29)

_ Wmh®-dn-1 (am-2Rm-1-2Rp-1-2Rp+Pxh2) =dp_oRp-1

Sm
(2.30)

Cm = Rm-1 - 2am-1Rm-1 - bp-2Rp-1 + am-2a8m-1Rm-1

+ 4Ry - 2am-1 Ry + Rpey + kph? = Pgh2 (2-ap-1) (2.31)

1 through 4.

The lateral load (Py) and the moment (M) at the top
of the pile are known.

The lateral load (Py) and the slope of the elastic
curve (Sg) at the top of the pile are known.

The lateral load (Py) and the rotational-restraint
constant (My/St) at the top of the pile are known.

The moment (My) and the deflection (yt),ét thebtop
of the pile are known.

14

Four sets of

These are designated as Cases

For convenience in establishing expressions for these

boundary conditions, the following constants are defined:
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Figure 2.6. Points at top of pile.
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J1 = 2hSg, (2.32)

M h2
Jp = —{;;—, (2.33)
2P+h3
J3 = —;&T-, (2.34)
__h M
Jg 2Ry Si’ and (2.35)
-P.h2
E = —&— (2.36)
Re

The boundary conditions for Case 1 are shown by the sketches
in Fig. 2.7. The difference equations for the top of the pile are
as shown in Egs. 2.37 and 2.38.

P = Support for an
t ] * overhead sign

arm

-
M
r)u_
— -7’*77— groundline Pt C

Note: Pt and Mt are known; they are shown in the positive sense in
the sketches.

Figure 2.7. Case 1 of boundary conditions at top of pile.
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R
Eiﬁ (vt-2 - 2yt-1 + 2yg+1 - Yt+2)

P

+ 5§ (ve-1 - Yt+1) = Py, and (2.37)
Rt
n2 (Ye-1 - 2yt + ye41) = M. (2.38)

After substitutions the difference equations for the deflection at

the top of the pile and at the two imaginary points above the top
of the pile are:

Yt 0" (2.39)

J2 + G1y+ = dy-
Ye+1 = g 1G; L 1, and (2.40)

atr¥t++1 = Y+ + de

Yt+42 = by ’ (2.41)
where
- Gi1H2 - 1) 1
Q3 Hy + G, + (1 ag G2 ) by’ (2.42)
at (J2 - de-1) , B2 (%1 - 37) , dt
Q2 = I3+ b¢ G2 G2 by
+ di-3 (2 + E -~ at-2) = dg-2, (2.43)
Gl = 2 - ap_q, (2.44)
G2 = 1 - be-q, (2.45)
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Hl = -2at_1 - Eat_l - bt-2 + at-1at-2/ and (2.46)

H2 = -ag-2bg-) + 2bg-3 + 2 + E (1 + be-1) . (2.47)

The boundary conditions for Case 2 are shown by the sketches
in Fig. 2.8. The difference equations for the boundary conditions
are given by Eq. 2.37 given earlier and Eq. 2.48 shown below.

Yt-1 = Yt+1 = J1 (2.48)
Yt + 2
. 'M‘
Concrete foundation FEy, 4q MY
*| with known rotation :,' 3 X}
l' v S
] .

: ¥
¥

Note: Pt and St are known; they are shown in the positive sense.

Figure 2.8. Case 2 of boundary conditions at top of pile.

The resulting difference equations for the deflections at the
three points at the top of the pile are:

(2.50)

[
-
[V

o}
Q.

Yt+1 Gy
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at¥t+1 — Yt + de

Yt+2 = by ' (2.51)
where
_ Hpat 3 _ arat-g a1
Q3 Hy + Gs by Gg + by’ (2.52)

J]_H?_ _ a¢ (Jl-dt—l)-G4dt + btdt-].HZ

Q = J3 +
4 37 64 bt Gyq
+ dg-; (2 + E-ap-3) - dp-2, and (2.53)
G4 = 1 + bt-l. (2.54)

and the other constants are as previously defined.

The boundary conditions for Case 3 are shown by the sketches
in Fig. 2.9. The difference equations for the boundary conditions
are Eq. 2.37 given earlier and Eq. 2.55 shown below.

Yt-1 = 2yt + Y41
Yt-1 - Yt+1

= Jg4 (2.55)

The resulting difference equations for the deflections at the
three points at the top of the pile are:

ardy-1(1-Jg) dJ. dy-1Ho (1-J4)
J3 - bt (G2+J4G4) + bt + dt-l (2+E at-z) dt_z + G2+J4G4
Y = 4
ag 1
Hq1 + HoHq - Hy + T
1 273 by 3 by
(2.56)
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Pile extends and
in effect becomes
:: a column in
‘ superstructure

—) groundline t

Note: Pt and Mt/S are known; they are shown in the positive
sense in the sketches

Figure 2.9. Case 3 of boundary conditions at top of pile.

_ &;(G1+J4at-1) - dt...]_(l-Jq) dt-] (l‘Jﬂ)
Yr+l = G2 + J4Gyq = Haye - G2 + J4Ggq ' and
(2.57)
1
ve+2 = 5o (at¥es1 - ye + dp), (2.58)
where
Gy + Jgap-3

H3 = ST goee (2.59)

The other constants have been previously defined.
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The boundary conditions for Case 4 are shown by the sketches
in Fig. 2.10. The difference equations are given by Eg. 2.38 given
earlier and by Eq. 2.60 given below.

Yt = Yt (2.60)

Using the above equations with a family of p-y curves,
iteration is carried out until the solution converges to
appropriate values of k at all points along the pile. Thus, the

behavior of a pile under lateral 1load may be obtained by using
COM624P.,

Bridge abutment that
moves laterally

groundline t

b\

Pile-head moment is
known; may be zero

Note: Mt and Yt are known; they are shown in the positive

sense in the sketches

Figure 2.10. Case 4 of boundary conditions at top of pile.
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CHAPTER 3. SOIL RESPONSE CURVES (p-y CURVES)

INTRODUCTION

As noted earlier, the soil response is characterized as a set
of discrete mechanisms such that the soil response at a point is
not dependent on pile deflection elsewhere, thus, a continuum is
not perfectly modeled. However, the recommendations for
predicting p-y curves, as presented herein, are based on full-
scale experiments in which the continuum effect was explicitly
implemented. Furthermore, a small amount of unpublished
experimental data suggests that the soil response at a point is
unaffected by those changes in deflected shape that can be
achieved by altering the rotational restraint at the pile head by
any practical amount. |

The three factors that have the most influence on a p-y curve
are the soil properties, the pile geometry, and the nature of
loading. The correlations that have been developed for predicting
soil response have been based on the best estimate of the
properties of the in-situ soil with no adjustment for the effects
on soil properties of the method of installation. The logic
supporting this approach is that the effects of pile installation
on soil properties are principally confined to a zone of soil
close to the pile wall, while a mass of soil of several diameters
from the pile is stressed as lateral deflection occurs. There are
instances, of course, where the method of pile installation must
be considered; for example, if a pile is jetted into place, a
considerable volume of soil could be removed with a significant
effect on the soil response.

The principal dimension of a pile affecting the soil response
is its diameter. All of the recommendations for developing p-y
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curves include a term for the diameter of the pile; if the cross
section of the pile is not c¢ircular, the width of the pile
perpendicular to the direction of loading is usually taken as the
diameter.

USE OF SOIL MODELS TO DETERMINE SOIL BEHAVIOR

Some writers have made use of the theory of elasticity to
develop expressions for p as a function of y, but the approach has
been of limited use. Soil behavior can be modeled by the theory
of elasticity only for very small strains. The limit-equilibrium
approach applies at large strains and is employed herein to
develop some useful expressions.

Soil Models for Saturated Clay

The assumed model for estimating the ultimate soil resistance

near the ground surface is shown in Fig. 3.1 (Reese, 1958). The
force Fp is

Fp = cgbH [tan & + (1+K) cot @] + l'YbHZ + caH2 sec O

2
(3.1)
where
caq = average drained shear strength,

K = a reduction factor to be multiplied by cy to yield the
average sliding stress between the pile and the stiff
clay, and

Y = average unit weight of soil.

(the other terms are defined in the figure)

316



Figure 3.1. Assumed passive wedge-type failure for clay:
(a) shape of wedge (b) forces acting on wedge
(after Reese, 1958).
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The angle o is taken as 45 degrees and K is assumed equal to zero.
Differentiation of the resulting expression with respect to H
yields an expression for the ultimate soil resistance as follows.

(Pu)Ca = 2c3b + YPH + 2.83 cLH (3.2)

It can be reasoned that at some distance below the ground
surface the soil must flow around the deflected pile. The model
for such movement is shown in Fig. 3.2a. If it is assumed that
blocks 1, 2, 4, and 5 fail by shear and that block 3 develops
resistance by sliding, the stress conditions are represented by
Fig. 3.2b. By examining a free body of a section of the pile,
Fig. 3.2c, one can conclude that:

(pu)cb = 1llcb. (3.3)

Equations 3.2 and 3.3 are, of course, approximate but they do
indicate the general form of the expressions that give the
ultimate soil resistance along the pile. The equations can be
solved simultaneously to find the depth at which the failure would
change from the wedge-type to the flow-around type.

Soil Models for sand

The soil model for computing the ultimate resistance near the

ground surface is shown in Fig. 3.3a (Reese, Cox, and Koop, 1974).
The total lateral force Fpt (Fig. 3.3c) may be computed by

subtracting the active force Fa, computed using Rankine theory,
from the passive force Fp, computed from the model. The force Fp
is computed by assuming that the Mohr-Coulomb failure condition is
satisfied on planes ADE, BCF, and AEFB. The directions of the
forces are shown in Fig. 3.3b. No frictional force is assumed to
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Figure 3.2. Assumed lateral flow-around type of failure for clay:
(a) section through pile (b) Mohr-Coulomb diagram
(c) forces acting on Pile 4.5,
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Direction of
Pile Movement

Pile of Diameter b

(b) P ' a

(c)

Figure 3.3. Assumed passive wedge-type failure:
(a) general shape of wedge (b) forces of wedge (c¢) forces on pile
(after Reese, et al, 1974).



be acting on the face of the pile. The equation for Fpt is as

follows:
KoH tand sinf tanPp H
F = YH2 [ Q + > + 2 tan tana)
pt s 3 tan (B-¢) cosa tan (B-¢) \2 3 P
KoH tan Kab
+ "L-s'——g (tan$ sinp - tana) - —g—] (3.4)

where

Ko = coefficient of earth pressure at-rest, and

Ka = minimum coefficient of active earth pressure.

The ultimate soil resistance per unit length of the pile is
obtained by differentiating Eq. 3.4.

KoH tan¢ sinf tanp
+
tan (B-¢) cosa tan (B-¢)

(Pu)sa = M [ (b + H tanP tana)

+ KoH tanP (tan¢ sinP - tana) - Kzb ] (3.5)

Bowman (1958) suggested values of a from ¢/3 to ¢/2 for loose sand
and up to ¢ for dense sand. The value of P is approximated as
follows:

.2
2

Bz 45 + (3.6)

The model for computing the ultimate soil resistance at some

distance below the ground surface is shown in Fig. 3.4a. The
stress 031, at the back of the pile must be equal to or larger than

the minimum active earth pressure; if not, the soil could fail by
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Figure 3.4. Assumed mode of soil failure by lateral flow around the
pile: (a) section through the pile (b) Mohr-Coulomb diagram
representing states of stress of soil flowing around a pile.
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slumping. This assumption is based on two-dimensional behavior,
of course, and is subject to some uncertainty. However, the
assumption should be adequate for the present purpose. Assuming
the states of stress shown in Fig. 3.4b, the ultimate soil
resistance for horizontal flow around the pile is

(Pu) sp = KabYH (tan8B - 1) + KobyH tan¢ tanip. (3.7)

As in the case for clay, Egs. 3.6 and 3.7 are quite
approximate but they serve a useful purpose in indicating the
form, if not the magnitude, of the ultimate soil resistance. The
two equations can be solved simultaneously to find the approximate
depth at which the soil failure changes from the wedge type to the
flow-around type.

RECOMMENDATIONS FOR p-y CURVES FOR CLAYS

Three major experimental programs were performed for piles in
clays to yield the criteria which follow. In each case the piles
were subjected to short-term static loads and to repeated (cyclic)
loads. The experimental program is described briefly in the
paragraphs that follow; a step-by-step procedure is given for
computing the p-y curves, recommendations are given for obtaining
the necessary data on soil properties, and example curves are
presented.

Response of Soft Clay below tha Water Table
Field E . I
Matlock (1970) performed lateral load tests employing a steel

pipe pile that was 12.75 inches in diameter and 42 ft long. It
was driven into clays near Lake Austin that had a shear strength
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of about 800 1lb/ftZ2. The pile was recovered, taken to Sabine

Pass,

Texas, and driven into clay with a shear strength that

averaged about 300 1b/ft2 in the significant upper zone.

2 lat; for Comouts v C

The following procedure is for short-term static loading and
is illustrated by Fig. 3.5a.

1.

Obtain the best possible estimate of the variation of
undrained shear strength ¢ and submerged unit weight ¥'

with depth. Also obtain the values of €50, the strain

corresponding to one-half the maximum principal stress
difference. If no stress-strain curves are available,

typical values of €50 are given in the following table.

TABLE 3.1. REPRESENTATIVE VALUES OF €50

Consistency of Clay €50

Soft 0.020
Medium 0.010
Stiff 0.005

Compute the ultimate soil resistance per unit length of
pile, using the smaller of the values given by the
equations below.

il g]

Py =[3+CX+bx cb (3.8)
Pu = 9cb (3.9)
where

Y' = average effective unit weight from ground surface

to p-y curve,
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Figure 3.5. Characteristic shapes of the p-y curves for soft clay
below water surface: (a) static loading (b) cyclic loading
(after Matlock, 1970).
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The

S
Il

depth from ground surface to p-y curve,

0O
[

shear strength at depth x, and

b = width of pile.

Matlock (1970) stated that the value of J was determined
experimentally to be 0.5 for a soft clay and about 0.25
for a medium clay. A value of 0.5 is frequently used
for J. The value of Py is computed at each depth where

a p-y curve is desired, based on shear strength at that
depth.

Compute the deflection, ysgg, . at one-half the ultimate
soil resistance from the following equation:

Y50 = 2.5 g5qb. (3.10)

Points describing the P~y curve are now computed from
the following relationship.

1
2 _ X\ 3
= 0.5 .11
Pu (YSO) (3.11)

The value of p remains constant beyond y = 8ygg.

following procedure is for cyclic 1loading and is

illustrated in Fig. 3.5b.

1.

Construct the p-y curve in the same manner as for short-
term static loading for values of p less than 0.72p,.

Solve Egs. 3.8 and 3.9 simultaneously to find the depth,
Xy, where the transition occurs. If the unit weight and

shear strength are constant in the upper zone, then
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6cb
= — . 3.12
Xy o + J0) ( )

If the unit weight and shear strength vary with depth,
the value of x, should be computed with the soil

properties at the depth where the p-y curve is desired.

3. If the depth to the p~y curve is greater than or equal
to xy, then p is equal to 0.72p; for all values of y
greater than 3ygg.

4 If the depth to the p-y curve is less than x,, then the
value of p decreases from 0.72p,; at y = 3ygg to the
value given by the following expression at y = 15ygg.

p = 0.72py (ﬁi) (3.13)

The value of p remains constant beyond y = 15ys5q.
Recommended Soil Tests
For determining the various shear strengths of the soil

required in the p-y construction, Matlock (1970) recommended the
following tests in order of preference:

1. in-situ vane-shear tests with parallel sampling for soil
identification,
2. unconsolidated-undrained triaxial compression tests

having a confining stress equal to the overburden
pressure with ¢ being defined as half the total maximum
principal-stress difference,

3. miniature vane tests of samples in tubes, and

4, unconfined compression tests.
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Tests must also be performed to determine the unit weight of
the soil.

Rasponse of Stiff Clay below the Water Surface
Field E .

Reese, Cox, and Koop (1975) performed lateral-load tests
employing steel-pipe piles that were 24 inches in diameter and 50
ft 1long. The piles were driven into stiff clay at a site near
Manor, Texas. The clay had an undrained shear strength ranging
from about 1 ton/ft? at the ground surface to about 3 ton/ftl at a
depth of 12 feet.

B ati for Computi g C

The following procedure is for short-term static loading and
is illustrated by Fig. 3.6.

1. Obtain values for undrained soil shear strength ¢, soil
submerged unit weight ¥', and pile diameter b.

2. Compute the average undrained soil shear strength ca
over the depth x.

3. Compute the ultimate soil resistance per unit length of
pile, using the smaller of the values given by the
equations below:

Pcd = 1llcb. (3.15)
4, Choose the appropriate value of Ag from Fig. 3.7 for the

particular nondimensional depth.
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Figure 3.6. Characteristic shape of p-y curve for static loading in
stiff clay below the water surface
(after Reese, et al, 1975).
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Figure 3.7. vValues of constants Ag and A,
(after Reese, et al, 1975).
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5. Establish the initial straight-line portion of the p-y
curve,

p = (kx)y (3.16)

Use the appropriate value of kg or ko from Table 3.2
for k.

TABLE 3.2. REPRESENTATIVE VALUES OF k FOR STIFF CLAYS

Average Undrained Shear Strength*

ton/ft2
0.5-1 1-2 2.4
ks (Static) 1b/in3 500 1000 2000
k. (Cyclic) 1b/in3 200 400 800

*The average shear strength should be computed from the shear strength of the
soil to a depth of 5 pile diameters. It should be defined as half the total
maximum principal stress difference in an unconsolidated undrained triaxial
test.

6. Compute the following:
ys50 = €s0b (3.17)

Use an appropriate value of €ggp £from results of

laboratory tests or, in the absence of laboratory tests,
from Table 3.3.

TABLE 3.3. REPRESENTATIVE VALUES OF €50 FOR STIFF CLAYS

Average Undrained Shear Strength

ton/ft2
_ ) .
0.007 0.005 0.004

€50 (in/in)
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10.

Establish the first parabolic portion of the p-y curve,
using the following equation and obtaining pc from Egs.
3.14 or 3.15,.

0.5
P = 0.5pg (;-;%) (3.18)

Equation 3.18 should define the portion of the Py
curve from the point of the intersection with Eq. 3.16
to a point where y is equal to Agysp (see note in Step
10).

Establish the second parabolic portion of the p-y curve,

0.5 - Agyso\l.25
p = 0.5p, (;?3) - 0.055p, ——K;;gaﬁg) . (3.19)

Equation 3.19 should define the portion of the p-y
curve from the point where y is equal to Agysp to a

point where y is equal to 6Agyso (see note in Step 10).

Establish the next straight-line portion of the P-y
curve,

0.0625
P = 0.5pc(625) %> - 0.411p, - “¥so  Pc (¥Y-6Asyso).

(3.20)

Equation 3.20 should define the portion of the p-y
curve from the point where y is equal to 6Agysg to a

point where y is equal to 18Agys50 (see note in Step 10).

Establish the final straight-line portion of the p-y
curve,

P = 0.5pc(6a5)°® - 0.411p; - 0.75pcAg, or  (3.21)

p = pc (1.225VAg - 0.75a5 - 0.411) . (3.22)
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Equation 3.22 should define the portion of the p-y
curve from the point where y is equal to 18Agysg and for

all larger values of y (see following note).

Note: The step-by-step procedure is outlined, and Fig.
3.6 is drawn, as if there is an intersection between
Egqs. 3.16 and 3.18. However, there may be no
intersection of Eq. 3.16 with any of the other equations
defining the p-y curve. Equation 3.16 defines the p-y
curve until it intersects with one of the other
equations or, if no intersection occurs, Eq. 3.16
defines the complete p-y curve.

The following procedure is for cyclic loading and is
illustrated in Fig. 3.8.

1. Steps 1, 2, 3, 5, and 6 are the same as for the static
case.
4. Choose the appropriate value of A from Fig. 3.7 for the

particular nondimensional depth.

Compute the following:

yp = 4.1 Acyso, (3.23)
7. Establish the parabolic portion of the p-y curve,
y - 0.45 yp | 2.5

Equation 3.24 should define the portion of the p-y
curve from the point of the intersection with Eq. 3.16
to where y is equal to 0.6yp (see note in step 9).

8. Establish the next straight-line portion of the p-y
curve,
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CYCLIC

Soil Resistance, p (1b/1n.)

Deflection, y (in.)

Figure 3.8. Characteristic shape of p-y curve for cyclic loading in
stiff clay below water surface (after Reese, et al, 1975).
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0.085
Y50

p = 0.936 Acpc - pc (v - 0.6 yp) - (3.25)

Equation 3.25 should define the portion of the p-y
curve from the point where y is equal to 0.6yp to the

point where y is equal to 1.8yp (see note in step 9).

S. Establish the final straight-line portion of the p-y
curve,
0.102
= 0.936 A - 3.26
p cPc Y50 PcYp. ( )

Equation 3.26 should define the portion of the p-y
curve from the point where y is equal to 1.8yp and for

all larger values of y (see following note).

Note: The step-by-step procedure is outlined, and Fig.
3.8 is drawn, as if there is an intersection between Eq.
3.16 and 3.24. However, there may be no intersection of
those two equations and there may be no intersection of
Eq. 3.16 with any of the other equations defining the p-
y curve. If there is no intersection, the equation
should be employed that gives the smallest value of p
for any value of y.

Racommended Soil Taests

Triaxial compression tests of the unconsolidated-undrained
type with confining pressures conforming to in-situ pressures are
recommended for determining the shear strength of the soil. The
value of €gg should be taken as the strain during the test
corresponding to the stress equal to half the maximum total
principal stress difference. The shear strength, c, should be
interpreted as one-half of the maximum total-stress difference.
Values obtained from the triaxial tests might be somewhat
conservative but would represent more realistic strength values

than other tests. The unit weight of the soil must be determined.
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Field E . |

A lateral load test was performed at a site in Houston where
the foundation was a drilled shaft, 36 ins in diameter. A 10-inch
diameter pipe, instrumented at intervals along its length with
electrical-resistance-strain gages, was positioned along the axis
of the shaft before concrete was placed. The embedded length of
the shaft was 42 feet. The average undrained shear strength of
the clay in the upper 20 ft was approximately 2,200 lbs/ft2. The
experiments and their interpretation are discussed in detail by
Welch and Reese (1972) and Reese and Welch (1975) .

B gt for Computi g

The following procedure is for short-term static loading and
is illustrated in Fig. 3.9,

1. Obtain values for undrained shear strength ¢, soil unit
weight Y, and pile diameter b. Also obtain the values

of €59 from stress-strain curves. If no stress-strain

curves are available, use a value from €50 of 0.010 or

0.005 as given in Table 3.1, the larger value being more
conservative,

2, Compute the ultimate soil resistance per unit length of
shaft,p,;, using the smaller of the values given by Egs.
3.8 and 3.9. (In the use of Eq. 3.8 the shear strength
is taken as the average from the ground surface to the
depth being considered and J is taken as 0.5. The unit
weight of the soil should reflect the position of the
water table.)

3. Compute the deflection, Y50, at one-half the ultimate
soil resistance from Eq. 3.10.
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P" P

Figure 3.9. Characteristic shape of p-y curve for static loading in
stiff clay above water surface (after Welch and Reese, 1972).
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The

Points describing the P-y curve may be computed from the
relationship below.

1

2. _ Y _\4
= 0.5 3.27
Pu (YSO) ( )

Beyond y = 16y50, p is equal to pu for all values of y.

following procedure is for cyclic loading and is

illustrated in Fig. 3.10.

1.

where

Determine the p-y curve for short-term static loading by
the procedure previously given,

Determine the number of times the design lateral load
will be applied to the pile.

For several values of p/py obtain the value of C, the

parameter describing the effect of repeated loading on
deformation, from a relationship developed by laboratory
tests, (Welch and Reese, 1972), or in the absence of
tests, from the following equation.

4
C=209.6 (L) (3.28)
Pu

At the value of p corresponding to the values of pP/Pu

selected in step 3, compute new values of y for cyclic
loading from the following equation.

Ye = ¥s + Y50 °* C * logN (3.29)

Yo deflection under N-cycles of load,

deflection under short-term static load,

Y¥s
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] J
Vo — 16y59 16550 1635,
9.6( + L + +
. ySO) oghy 9.6(y5°)logN2 9-6(Y50)1°8 N3

Figure 3.10. Characteristic shape of p-y curve for cyclic loading
in stiff clay above water surface (after Welch and Reese, 1972).
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Y50 = deflection under short-term static load at one-

half the ultimate resistance, and

N = number of cycles of load application.
5. The p-y curve defines the soil response after N-cycles
of load.

Recommended Soil Tests

Triaxial compression tests of the unconsolidated-undrained
type with confining stresses equal to the overburden pressures at
the elevations from which the samples were taken are recommended
to determine the shear strength. The value of €53 should be taken
as the strain during the test corresponding to the stress equal to
half the maximum total principal stress difference. The undrained
shear strength, C, should be defined as one-half the maximum
total-principal-stress difference. The unit weight(of the soil
must also be determined.

RECOMMENDATIONS FOR P~y CURVES FOR SAND

As shown below, a major experimental program was conducted on
the behavior of laterally loaded piles in sand below the water
table. The results can be extended to sand above the water table.

Response of Sand below the Water Table
Field E . :

An extensive series of tests was performed at a site on
Mustang Island, near Corpus Christi (Cox, Reese, and Grubbs,
1974). Two steel pipe piles, 24 ins in diameter, were driven into

sand in a manner to simulate the driving of an open~ended pipe,
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pipe, and were subjected to lateral loading. The embedded length
of the piles was 69 feet. One of the piles was subjected to
short-term loading and the other to repeated loading.

The soil at the site was a uniformly graded, fine sand with
an angle of internal friction of 39 degrees. The submerged unit
weight was 66 1b/ft3. The water surface was maintained a few
inches above the mudline throughout the test program.

The following procedure is for short-term static loading and
for cyclic loading and is illustrated in Fig. 3.11 (Reese, Cox,

‘and Koop, 1974).

1. Obtain values for the angle of internal friction ¢, the
soil unit weight 7y, and pile diameter b.

2. Make the following preliminary computations.
o = %; B =45 + Q; Ko = 0.4; and Ky = tan? (45 - %)
(3.30)
3. Compute the ultimate soil resistance per unit length of

pile using the smaller of the values given by the
equations below.

K ta in tan
[ ox tand sinp B (b + x tanP tana)

Pst tan (B-¢) cosa tan (B-9)
+ Kox tanP (tand sinf - tana) - Kgb ]. (3.31)

psgq = KabYx (tan8B - 1) + Kobyx tand tan4p.  (3.32)

For the sand below the water table, the submerged unit
weight Y' should be used.

341



I X3X4

X3X3

X=X2

[ Pu_ oy X=X

m [m I

@ _—pm I

I y

k ’m lu

= —Py ' l

| I |

y| | |
KgX | : X0

b760 3b/80

Figure 3.11. Characteristic shape of a family of p-y curves for
static and cyclic loading in sand (after Reese, et al, 1974).
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In making the computations in Step 3, find the depth x¢

at which there is an intersection at Egs. 3.31 and 3.32.
Above this depth use Eq. 3.31. Below this depth use Eq.
3.32.

Select a depth at which a p-y curve is desired.

Establish y, as 3b/80. Compute p, by the following
equation:

Pu = AgPs Or puy = AcPs, (3.33)

Use the appropriate value of G;S or Gqc from Fig. 3.12

for the particular nondimensional depth, and for either
the static or cyclic case. Use the appropriate equation
for pg, Eq. 3.31 or Egq. 3.32, by referring to the

computation in step 4.
Establish yn as b/60. Compute py by the following

equation:

Pm = BsPs Or Pp = BePs. (3.34)

Use the appropriate value of Bg or Bc from Fig. 3.13

for the particular nondimensional depth, and for either
the static or cyclic case. Use the appropriate equation
for pg-. The two straight-line portions of the p-y

curve, beyond the point where y is equal to b/60, can
now be established.

Establish the initial straight-line portion of the p-y
curve,

p = (kx)y. (3.35)

Use the appropriate value of k from Tables 3.4 or 3.5.
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As (STATIC)
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Figure 3.12. Values of coefficients ;;c and ;;s
(after Reese, et al, 1974).
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X
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B = 0.5

Figure 3.13. Values of coefficient B for soil resistance

versus depth (after Reese, et al, 1974).
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TABLE 3.4. REPRESENTATIVE VALUES OF k FOR SUBMERGED SAND
(Static and Cyclic Loading)

Relative Density Loose Medium Dense

Recommended k (1b/in3) 20 60 125

TABLE 3.5. REPRESENTATIVE VALUES OF k FOR SAND ABOVE WATER TABLE
(Static and Cyclic Loading)

Relative Density Loose Medium Dense

Recommended k (1b/in3) 25 20 225

9. Establish the parabolic section of the P~y curve,
p=cCcyl/n (3.36)

Fit the parabola between points k and m as follows:

a. Get the slope of line between points m and u by,
m = En_:_Bm_ (3.37)
Yu = ¥m

n . {(3.38)
mym
c. Obtain the coefficient 7; as follows:
T - —Em_ (3.39)
1l/n
Yn
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d. Determine point k as,

C Y n/n-1
Yk = |%kx . (3.40)

e. Compute appropriate number of points on the parabola
by using Egq. 3.36.

Note: The step-by-step procedure is outlined, and Fig.
3.11 is drawn, as if there is an intersection between the
initial straight-line portion of the p-y curve and the
parabolic portion of the curve at point k. However, in
some instances there may be no intersection with the
parabola. Equation 3.35 defines the p-y curve until there
is an intersection with another branch of the p-y curve or
if no intersection occurs, Eg. 3.35 defines the complete
P-y curve. This completes the development of the p-y
curve for the desired depth. Any number of curves can be

developed by repeating the above steps for each desired
depth.

Racommended Soil Tests

Triaxial compression tests are recommended for obtaining the
angle of internal friction of the sand. Confining pressures
should be used which are close or equal to those at the depths
being considered in the analysis. Tests must be performed to
determine the unit weight of the sand.

Raaponse of Sand above the Water Table

The procedure in the previous section can be used for sand
above the water table if appropriate adjustments are made in the
unit weight and angle of internal friction of the sand. Some
small-scale experiments were performed by Parker and Reese (1971)
and recommendations for p-y curves for dry sand were developed
from the experiments. The results from the Parker and Reese
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experiments should be useful as a check of solutions made using
results from the test program using full-scale piles,

RECOMMENDATIONS FOR P-y CURVES FOR VUGGY LIMESTONE
Field E . |

Very little information is available on the behavior of piles
that have been installed in rock. Some other type of foundation
would normally be used. However, a study was made of the behavior
of an instrumented drilled shaft that was installed in vuggy
limestone in the Florida Keys (Reese and Nyman, 1978). The test
was performed for the purpose of gaining information for the
design of foundations for highway bridges.

Difficulty was encountered in obtaining properties of the
intact rock. Cores broke during excavation and penetrometer tests
were misleading (because of the vugs) or could not be run. Tests
were made on two cores from the site. The small discontinuities
in the outside surface of the specimens were covered with a thin
layer of gypsum cement in an effort to minimize stress
concentrations. The ends of the specimens were cut with a rock
saw and lapped flat and parallel. The specimens were 5.88 ins in
diameter and with heights of 11.88 ins for Specimen 1 and 10.44
ins for Specimen 2. The undrained shear strength of the specimens
were taken as one-half the unconfined compressive strength and
were 17.4 and 13.6 T/sq ft for Specimens 1 and 2, respectively.

The rock at the site was also investigated by in-situ-grout-
plug tests under the direction of Dr. John Schmertmann (1977). A
5.5-inch diameter hole was drilled into the limestone, a high
strength steel bar was placed to the bottom of the hole, and a
grout plug was cast over the lower end of the bar. The bar was
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pulled until failure occurred and the grout was examined to see
that failure occurred at the interface of the grout and limestone.
Tests were performed at three borings and the following results
were obtained, in T/sq ft; depth into limestone from 2.5 to 5 ft,
23.8, 13.7, and 12.0; depth into limestone from 8 to 10 ft, 18.2,
21.7, and 26.5; depth into limestone from 18 to 20 ft, 13.7 and
10.7. The average of the eight tests was 16.3 T/sqg feet.
However, the rock was stronger in the zone where the deflections
of the drilled shaft were most significant and a shear strength of
18 T/sq ft was selected for correlation.

The drilled shaft was 48 inches in diameter and penetrated
43.7 ft into the limestone. The overburden of fill was 14 ft
thick and was cased. The load was applied about 11.5 ft above the
limestone. A maximum horizontal load of 75 tons was applied to
the drilled shaft. The maximum deflection at the point of load
application was 0.71 in and at the top of the rock (bottom of
casing) it was 0.0213 inch, While the curve of load versus
deflection was nonlinear, there was no indication of failure of
the rock.

R Jat e c Y —y_C

A single p-y curve, shown in Fig. 3.14, was proposed for the
design of piles under lateral loading in the Florida Keys. Data
are insufficient to indicate a family of curves to reflect any

increased resistance of the rock.

As shown in the figure, load tests are recommended if
deflection of the rock (and pile) are greater than 0.0004b and
brittle fracture is assumed if the lateral stress (force per unit

length) against the rock becomes greater than the diameter times
the shear strength s, of the rock.
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Figure 3.14. Recommended p-y curve for design of drilled shafts
in vuggy limestone (after Reese and Nyman, 1978).
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The p-y curve shown in Fig. 3.14 should be employed with
considerable caution because of the limited amount of experimental
data and because of the great variability in rock. The behavior
of rock at a site could be very well controlled by joints, cracks,

and secondary structure of rock and not by the strength of intact
specimens.

RECOMMENDATIONS FOR p-y CURVES FOR LAYERED SOIL

There are numerous cases where the soil near the ground
surface is not homogeneous but is layered. If the layers are in
the zone where the soil would move up and out as a wedge, some

modification is plainly needed in order to compute the ultimate
soil resistance p,, and consequently modifications are needed in

the p-y curves.

The problem of the layered soil has been given intensive
study by Allen (1985); however, Allen's formulations require the
use of several computer codes. Integrating the methods of Allen
with the methods shown herein must be delayed until a later date
when his research can be put in a readily usable form.

Meathod of Geoxrgiadis

The proposal of Georgiadis (1983) was selected for the
purposes of the computer code that is presented here. The method
is based on the determination of the "equivalent" depth of all the
layers existing below the upper layer. The p-y curves of the
upper layer are determined according to the methods presented
herein for homogeneous soils. To compute the p-y curves of the
second layer, the equivalent depth Hp to the top of the second

layer has to be determined by summing the ultimate resistances of
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the upper layer and equating that value to the summation as if the

upper layer had been composed of the same material as in the
second layer. The values of p,; are computed according to the

equations given earlier. Thus, the following two equations are
solved simultaneously for Hj:

Fq = oHl Pyl dH, and ; (3.41)

Fq1 = OH2 pPy2 dH. (3.42)

The equivalent thickness Hyp of the upper layer along with the soil

properties of the second layer, are used to compute the p-y curves
for the second layer.

The concepts presented above can be used to get the
equivalent thickness of two or more dissimilar layers of soil

overlying the layer for whom the p-y curves are desired.

Example p-y Curves

The example problem to demonstrate the manner in which the
computer program deals with layered soils is shown in Fig. 3.15.
As seen in the sketch, a pile with a diameter of 24 ins is
embedded in soil consisting of an upper layer of soft clay,
overlying a layer of loose sand, which in turn overlays a layer of
stiff clay. The water table is at the ground surface and the

loading is assumed to be static.
Four p-y curves for the case of layered soil are shown in

Fig. 3.16. The curve at a depth of 36 ins falls in the upper zone
of soft clay; the curve for the depth of 72 ins falls in the sand

352



Depth, in.

68

52

240

Figure 3.15.

W.T.
v ¥
‘ ¢ = 500 psf
Soft Clay -
€50 0102
y' = 50 pcf
.*.
3
Loose Sand ¢ = 30 deg
.*- y' = 50 pcf
¢ = 2000 psf
ecn = 0.005
Stiff Clay 50
y' = 60 pcf
k = 750 pci

Static Loading

28"

Example problem for soil response for layered soils.
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p (1b/in.)

A Stiff Clay
X = 288 in.
2000
1800
1600
1400
i -
1200 Stiff Clay
x = 144 in,
1000] '
8001
600]
Sand
400 x =72 in.
200 m— Soft Clay
x = 36 in.
]
0 1.0 Z.IT)
y (in.)

Figure 3.16. Example p-y curves for layered soils.
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